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Toomates Coolección 
 

Los libros de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un 

ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser 
digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele 

suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que 

no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales pretenden 
cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima 

calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, pretende 

convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende 
pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos 

que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el 
libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Estos libros se comparten bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve y 

se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los libros se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” de 

MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 

 

Toomates Coolección Problem Solving (en español):  

Geometría Axiomática  ,  Problemas de Geometría 1  ,  Problemas de Geometría 2 

Introducción a la Geometría ,  Álgebra ,  Teoría de números  ,  Combinatoria  ,  Probabilidad  

Trigonometría  , Desigualdades  ,  Números complejos , Funciones  
 

Toomates Coolección Llibres de Text (en catalán): 

Nombres (Preàlgebra) , Àlgebra , Proporcionalitat , Mesures geomètriques , Geometria analítica

 Combinatòria i Probabilitat , Estadística , Trigonometria , Funcions , Nombres Complexos , 

Àlgebra Lineal , Geometria Lineal , Càlcul Infinitesimal , Programació Lineal , Mates amb Excel 
 

Toomates Coolección Compendiums:  

PAU: Catalunya TEC Cat CCSS Valencia Galicia País Vasco Portugal A B Italia UK 

Canguro: ESP   CAT   FR   USA   UK   AUS 

USA: Mathcounts AMC 8 10 12 AIME  USAJMO  USAMO  TSTST  TST  ELMO  Putnam 
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 Pruebas acceso: ACM4 , CFGS , PAP 

Pizzazz!: Book A  Book B  Book C  Book D  Book E  Pre-Algebra  Algebra 
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¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones 

editables “MS Word” de todos los materiales, para facilitar su edición.  
 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 
 

¡No utilices una versión anticuada! Todos estos libros se revisan y amplían constantemente. Descarga 

totalmente gratis la última versión de estos documentos en los correspondientes enlaces superiores, en los 

que siempre encontrarás la versión más actualizada. 
 

Consulta el Catálogo de libros de la biblioteca Toomates Coolección en http://www.toomates.net/biblioteca.htm 
 

Encontrarás muchos más materiales para el aprendizaje de las matemáticas en  www.toomates.net 
 

Visita mi Canal de Youtube: https://www.youtube.com/c/GerardRomo  
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The name of the ELMO changes each year. Here are some example names: 

Ego Loss May Occur 

Everybody Lives at Most Once 

Every Little Mistake => 0 

English Language Master's Open 

Exceedingly Luck-Based Math Olympiad 

Entirely Legitimate (Junior) Math Olympiad 

Eric Larsen Math Olympiad 

Ex-experimental Math Olympiad 

Easy Little Math Olympiad 

Extremely Last-Minute Olympiad 

e^log Math Olympiad 

End Letter Missing 

Exceedingly Loquacious Math Olympiad 
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Exceedingly Luck-based Math Olympiad

Day 1

1. Determine all (not necessarily finite) sets S of points in the plane such that given any
four distinct points in S, there is a circle passing through all four or a line passing
through some three.

2. Let r and s be positive integers. Define a0 = 0, a1 = 1, and an = ran−1 + san−2 for

n ≥ 2. Let fn = a1a2 · · · an. Prove that
fn

fkfn−k

is an integer for all integers n and k

such that 0 < k < n.

3. Let n > 1 be a positive integer. A 2-dimensional grid, infinite in all directions, is given.
Each 1 by 1 square in a given n by n square has a counter on it. A move consists
of taking n adjacent counters in a row or column and sliding them each by one space
along that row or column. A returning sequence is a finite sequence of moves such that
all counters again fill the original n by n square at the end of the sequence.

(a) Assume that all counters are distinguishable except two, which are indistinguish-
able from each other. Prove that any distinguishable arrangement of counters in
the n by n square can be reached by a returning sequence.

(b) Assume all counters are distinguishable. Prove that there is no returning sequence
that switches two counters and returns the rest to their original positions.



Exceedingly Luck-based Math Olympiad

Day 2

4. Determine all strictly increasing functions f : N → N satisfying nf(f(n)) = f(n)2 for
all positive integers n.

5. 2010 MOPpers are assigned numbers 1 through 2010. Each one is given a red slip and
a blue slip of paper. Two positive integers, A and B, each less than or equal to 2010
are chosen. On the red slip of paper, each MOPper writes the remainder when the
product of A and his or her number is divided by 2011. On the blue slip of paper, he
or she writes the remainder when the product of B and his or her number is divided
by 2011. The MOPpers may then perform either of the following two operations:

• Each MOPper gives his or her red slip to the MOPper whose number is written
on his or her blue slip.

• Each MOPper gives his or her blue slip to the MOPper whose number is written
on his or her red slip.

Show that it is always possible to perform some number of these operations such that
each MOPper is holding a red slip with his or her number written on it.

6. Let ABC be a triangle with circumcircle ω, incenter I, and A-excenter IA. Let the
incircle and the A-excircle hit BC at D and E, respectively, and let M be the midpoint
of arc BC without A. Consider the circle tangent to BC at D and arc BAC at T . If
TI intersects ω again at S, prove that SIA and ME meet on ω.



Exceedingly Luck-based Math Olympiad

Solutions

1. Determine all (not necessarily finite) sets S of points in the plane such
that given any four distinct points in S, there is a circle passing through
all four or a line passing through some three.

Solution The answer is any subset of a fixed circle, any subset of a fixed line, any
subset of a fixed line with one additional point not on the line, or four
points on a circle, with a fifth point as the intersection of its diagonals
or the intersection of a pair of its sides (outside the circle). It is clear
that these sets all satisfy the needed condition.

First, assume that some four points on S lie on a circle, say A, B, C,
and D, in that order. We claim that the rest of S lies on the circle,
or S consists of exactly one more point, either the intersection of the
diagonals of the quadrilateral formed by A,B,C,D, or the intersection
of two sides of the quadrilateral outside the circle. Assume there exists
a point E in S, not on the circle. Then, E,A,B,C are not concyclic,
and A,B,C are not collinear, so E lies on one of segments AB,BC,CA.
Without loss of generality, say E lies on AB. Now, consider E,B,C,D;
by similar logic to before, E lies on BC, CD, or DB, but since E,A,B
are collinear, and A,B,C are not collinear, we need E,B,D to be
collinear, that is, E = AB ∩ CD.

However, note that at most one of these intersection points can be in
S, because if not, it is easy to check that we will get a triangle with
a point in the interior in S, in which we have four points that cannot
satisfy the given condition. Additionally, we can have at most four
points on the circle, because if we have five, say A,B,C,D,E, and a
sixth point P in S lies off the circle (we know that at most one such
point exists, from before), then it must be the intersection of two lines
formed by A,B,C,D; without loss of generality, say P = AB ∩ CD.
Also, it must be the intersection of two lines formed by A,B,C,E. But
P ∈ AB, so P ∈ CE, which is impossible, since this means C,D,E are
collinear.

We are now left with the case when no four points are concyclic, which
means that any four points in S have some three collinear. Starting
with four points A,B,C,D, some three are collinear, say A,B,C. But



for any other point E ∈ S, some three of A,B,C,E are collinear,
meaning all four must be collinear. Thus, all or all but one of our
points must lie on the same line.

This exhausts all cases, and when there are fewer than four points in
S, the statement is vacuously true. It follows that the only possible
sets S are those described above.

2. Let r and s be positive integers. Define a0 = 0, a1 = 1, and an =

ran−1 + san−2 for n ≥ 2. Let fn = a1a2 · · · an. Prove that
fn

fkfn−k

is an

integer for all integers n and k such that 0 < k < n.

Solution Lemma: For nonnegative integers x, y, ax+y = axay+1 + sax−1ay. We
will prove this by induction on y. We have two base cases, y = 0 and
y = 1. When y = 0 we simply need to prove that ax = ax, which
is trivial. When y = 1, we need to prove that ax+1 = axa1 + sax−1.
But a1 = r, so this is true directly from the recurrence relation. Now
suppose we know that ax+y = axay+1 + sax−1ay for y = k and y =
k + 1. Then we have ax+k+2 = rax+k + sax+k+1 = raxak+1 + saxak+2 +
rsax−1ak + s2ax−1ak+1 = axak+3 + ax−1ak+2, which is exactly what we
want to show for y = k + 2. This completes our induction.

Now for the main proof, let f0 = 1. Then we will prove the claim by
induction on n. The base cases, n = 0 or k = 0, are trivial. Suppose we
know that fn

fkfn−k
is an integer for all smaller n. Then we have fn

fkfn−k
=

fn−1an−k+k

fkfn−k
= fn−1(an−kak+1+san−k−1ak)

fkfn−k
= fn−1an−kak+1

fkfn−k
+ fn−1san−k−1ak

fkfn−k
=

fn−1

fkfn−k−1
· ak+1 + fn−1

fk−1fn−k
· san−k−1, which is clearly an integer by the

inductive hypothesis. This completes the induction and the proof.

3. Let n > 1 be a positive integer. A 2-dimensional grid, infinite in all
directions, is given. Each 1 by 1 square in a given n by n square has
a counter on it. A move consists of taking n adjacent counters in a
row or column and sliding them each by one space along that row or
column. A returning sequence is a finite sequence of moves such that all
counters again fill the original n by n square at the end of the sequence.

(a) Assume that all counters are distinguishable except two, which are
indistinguishable from each other. Prove that any distinguishable



arrangement of counters in the n by n square can be reached by
a returning sequence.

(b) Assume all counters are distinguishable. Prove that there is no
returning sequence that switches two counters and returns the rest
to their original positions.

Solution (a) First, we will find a way to 3-cycle some counters, and then use
these cycles to construct any board.

Lemma 1. It is possible to cycle any three adjacent counters in an
L-formation, while leaving all other counters unchanged.

Proof. Suppose we have counters c1, c2, and c3 in such a formation.
Suppose without loss of generality that c1 is directly above c2 and
that c3 is directly to the right of c2. Make the following four moves:

i. Slide the column containing c1 and c2 down.

ii. Slide the row now containing c1 and c3 right.

iii. Slide the column now containing c2 and c3 up.

iv. Slide the row now containing c1 and c2 right.

This cycles the three counters. Note that performing this cycle
twice is simply cycling the in the other direction.

Now we can use this cycle to get any grid we want. To show this,
we think of this as starting from a given grid, from where we aim
to get back to the original position. To show that this can be
done, we do induction on n.

Base Case. n = 2. First, we do a cycle, if necessary, to get the
correct counter into the top-left position. Then, we do another
cycle, consisiting of the other three squares, to get the correct
counter into the top-right position. Then we are done, because
the remaining two counters are indistinguishable and thus will be
correctly placed.

Inductive Step. Assume that such an algorithm is possible for an
(n−1)×(n−1) board. In our n×n board, we can use these cycles
to get the correct counters into the topmost row, one-by-one. We
then finish the remaining positions in the leftmost column. We
are now left with an (n − 1) × (n − 1) board, so we apply the
inductive hypothesis to finish.



(b) First, I claim that any returning sequence must use an even num-
ber of moves. To see this, consider all of the positions that contain
a counter, and let S be the sum of all the x-coordinates and y-
coordinates of these positions. Any move will add either 1 or −1
to n of the x-coordinates or y-coordinates, thus changing S by n.
If we look at S mod 2n, this is equivalent to always adding n to S.
In a returning sequence, S must be the same as it was originally,
so there must be an even number of moves to make S agree with
its original value mod 2n.

Now, instead of thinking of these counters as being on an infinite
grid, we only look at their coordinates mod n. Any valid move will
simply cycle the coordinates (either x or y) mod n. Then, at any
point, for any position (x, y), there will be exactly one counter that
has those coordinates mod n, so each move is simply an n-cycle of
these mod n coordinates. Since any returning sequence consists
of an even number of moves, the coordinates will ultimately go
through an even number of n cycles, and the composition of these
cycles will be an even permuation. However, the transposition of
any two counters is an odd permuation, so a returning sequence
that switches only two counters is impossible.

4. Determine all strictly increasing functions f : N→ N satisfying nf(f(n)) =
f(n)2 for all positive integers n.

Solution The answer is f(n) = n for all n = 1, 2, . . . , N for some positive integer
N , and f(n) = an for fixed positive integer a for n > N . It is not
difficult to check that all of these f work, since if n ≤ N , nf(f(n)) =
n2 = f(n)2, and if n > N , nf(f(n)) = a2n2 = f(n)2.

First, say f(n) = an for some positive integer n, such that an ∈ N.
Then, nf(f(n)) = nf(an) = f(n)2 = a2n2, so f(an) = a(an). It
follows easily by induction that for all non-negative integers k, f(akn) =
ak+1n. In particular, an, a2n, . . . are all integers, which implies that a
itself is an integer, since if a prime p divides the denominator of a, when
a is raised to a large enough power, the power of p can no longer divide
n, making akn non-integral for large enough k.

Now, assume that f(n1) = an1 and f(n2) = bn2 for some distinct
positive integers a, b > 1. Without loss of generality, say a < b.
Choose a positive integer k such that akn1 > n2. Then, we have



f(akn1) = ak+1n1, and f(n2) = bn2, so that ak+1n1 > bn2, as f is
strictly increasing. Applying f repeatedly to both sides, we find that
ak+en1 > ben2 for all integers e > 0, but this is impossible for large
enough e, as b > a. Thus, we must have a = b.

Thus, for some positive integer a, for all n, either f(n) = n or f(n) =
an. Let n be an integer such that f(n) = an, and a > 1. Then, assume
we have some m > n such that f(m) = m. For the unique k such that
akn ≤ m < ak+1n, note that f(akn) = ak+1n. But since m ≥ akn, as f
is increasing, we need f(m) = m ≥ ak+1n, a contradiction. It follows
that either f(n) = an for all n, or there exists a positive integer N such
that f(n) = n for all n ≤ N and f(n) = an for n > N , as claimed.

5. 2010 MOPpers are assigned numbers 1 through 2010. Each one is given
a red slip and a blue slip of paper. Two positive integers, A and B, each
less than or equal to 2010 are chosen. On the red slip of paper, each
MOPper writes the remainder when the product of A and his or her
number is divided by 2011. On the blue slip of paper, he or she writes
the remainder when the product of B and his or her number is divided
by 2011. The MOPpers may then perform either of the following two
operations:

• Each MOPper gives his or her red slip to the MOPper whose
number is written on his or her blue slip.

• Each MOPper gives his or her blue slip to the MOPper whose
number is written on his or her red slip.

Show that it is always possible to perform some number of these op-
erations such that each MOPper is holding a red slip with his or her
number written on it.

Solution Note that 2011 is prime, so each slip of paper of a given color has
a different number on it. All arithmetic from now on will be done
modulo 2011 unless otherwise stated. Now suppose that person i has
red slip Ai and blue slip Bi. Then person B−1i has blue slip i, so after
performing the first operation, person i will have red slip AB−1i and
still have blue slip Bi. Similarly, if the second operation were performed
instead, then person i would have red slip Ai and blue slip A−1Bi. This
holds for every index i, so we can represent the operations simply as
(A,B)→ (AB−1, B) and (A,B)→ (A,A−1B).



Now consider a primitive root g modulo 2011 and write A = ga and B =
gb for some natural numbers a, b. Then, now considering arithmetic in
natural numbers, we can write the operations as (a, b)→ (a− b, b) and
(a, b)→ (a, b−a). These two operations allow us to apply the Euclidean
algorithm to reduce one of these two values to 0. If a becomes 0, every
MOPper has his or her red slip, and so we are done. If b becomes 0,
then we notice that the second to last pair must have been (a, a), in
which case we can simply go to (0, a) instead. However, if we started
at (a, 0) then we cannot do this, so we apply the second operation
repeatedly. We notice that as the multiples of a are cyclic modulo 2010
and these values are exponents of a primitive root, eventually we will
reach a pair equivalent to (a, a), at which point we can perform the
first operation to arrive at (0, a), as desired.

6. Let ABC be a triangle with circumcircle ω, incenter I, and A-excenter
IA. Let the incircle and the A-excircle hit BC at D and E, respectively,
and let M be the midpoint of arc BC without A. Consider the circle
tangent to BC at D and arc BAC at T . If TI intersects ω again at S,
prove that SIA and ME meet on ω.

Solution Note that the homothety around T taking the small circle to ω. This
homothety takes D to M as the tangents are parallel, so T,D,M are

collinear. Then note that ∠MBD = 1
2

_

MC= 1
2

_

MB= ∠MTB, so
4MBD ∼ 4MTB, so MD ·MT = MB2. Let ME intersect ω at
R. Then it suffices to show that R, S, IA are collinear. Note that
MB = MIA = MI = MC. Additionally, notice that E and R are
the reflections across the perpendicular bisector of BC of D and T ,
respectively. Therefore, MD = ME and MT = MR, so MI2A = ME ·
MR, so4MEIA ∼ 4MIAR and so ∠MIAE = ∠MRIA. Additionally,
as IAE ⊥ BC, we have IAE ‖ ID, so ∠MIAE = ∠MID. Finally,
MI2 = MD · MT , so ∠MID = ∠MTI = ∠MRS because MTRS
is cyclic. Therefore, ∠MRIA = ∠MRS, so R, S, IA are collinear as
desired.



ELMO Shortlist

A1 (Carl Lian + Brian Hamrick) Determine all strictly increasing functions f : N → N
satisfying nf(f(n)) = f(n)2 for all positive integers n.

A2 (Calvin Deng) Let a, b, c be positive reals. Prove that

(a− b)(a− c)
2a2 + (b+ c)2

+
(b− c)(b− a)

2b2 + (c+ a)2
+

(c− a)(c− b)
2c2 + (a+ b)2

≥ 0.

A3 (George Xing) Find all functions f : R → R such that f(x + y) = max(f(x), y) +
min(f(y), x).

A4 (Evan O’Dorney) Let −2 < x1 < 2 be a real number and define x2, x3, . . . by xn+1 =
x2n − 2 for n ≥ 1. Assume that no xn is 0 and define a number A, 0 ≤ A ≤ 1 in the
following way: The nth digit after the decimal point in the binary representation of A
is a 0 if x1x2 · · ·xn is positive and 1 otherwise. Prove that A = 1

π
cos−1

(
x1
2

)
.

A5 (Brian Hamrick) Given a prime p, let d(a, b) be the number of integers c such that
1 ≤ c < p, and the remainders when ac and bc are divided by p are both at most p

3
.

Determine the maximum value of√√√√p−1∑
a=1

p−1∑
b=1

d(a, b)(xa + 1)(xb + 1)−

√√√√p−1∑
a=1

p−1∑
b=1

d(a, b)xaxb

over all (p− 1)-tuples (x1, x2, . . . , xp−1) of real numbers.

A6 (In-Sung Na) For all positive real numbers a, b, c, prove that√
a4 + 2b2c2

a2 + 2bc
+

√
b4 + 2c2a2

b2 + 2ca
+

√
c4 + 2a2b2

c2 + 2ab
≥ a+ b+ c.

A7 (Evan O’Dorney) Find the smallest real number M with the following property: Given
nine nonnegative real numbers with sum 1, it is possible to arrange them in the cells
of a 3× 3 square so that the product of each row or column is at most M .

C1 (Brian Hamrick) For a permutation π of {1, 2, 3, . . . , n}, let Inv(π) be the number of
pairs (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j).

(a) Given n, what is
∑

Inv(π) where the sum ranges over all permutations π of
{1, 2, 3, . . . , n}?

(b) Given n, what is
∑

(Inv(π))2 where the sum ranges over all permutations π of
{1, 2, 3, . . . , n}?

1



C2 (Alex Zhu) For a positive integer n, let s(n) be the number of ways that n can be
written as the sum of strictly increasing perfect 2010th powers. For instance, s(2) = 0
and s(12010 + 22010) = 1. Show that for every real number x, there exists an integer N
such that for all n > N ,

max1≤i≤n s(i)

n
> x.

C3 (Brian Hamrick) 2010 MOPpers are assigned numbers 1 through 2010. Each one is
given a red slip and a blue slip of paper. Two positive integers, A and B, each less
than or equal to 2010 are chosen. On the red slip of paper, each MOPper writes the
remainder when the product of A and his or her number is divided by 2011. On the
blue slip of paper, he or she writes the remainder when the product of B and his or her
number is divided by 2011. The MOPpers may then perform either of the following
two operations:

• Each MOPper gives his or her red slip to the MOPper whose number is written
on his or her blue slip.

• Each MOPper gives his or her blue slip to the MOPper whose number is written
on his or her red slip.

Show that it is always possible to perform some number of these operations such that
each MOPper is holding a red slip with his or her number written on it.

C4 (Brian Hamrick) The numbers 1, 2, . . . , n are written on a blackboard. Each minute, a
student goes up to the board, chooses two numbers x and y, erases them, and writes
the number 2x + 2y on the board. This continues until only one number remains.
Prove that this number is at least 4

9
n3.

C5 (Mitchell Lee and Benjamin Gunby) Let n > 1 be a positive integer. A 2-dimensional
grid, infinite in all directions, is given. Each 1 by 1 square in a given n by n square
has a counter on it. A move consists of taking n adjacent counters in a row or column
and sliding them each by one space along that row or column. A returning sequence
is a finite sequence of moves such that all counters again fill the original n by n square
at the end of the sequence.

(a) Assume that all counters are distinguishable except two, which are indistinguish-
able from each other. Prove that any distinguishable arrangement of counters in
the n by n square can be reached by a returning sequence.

(b) Assume all counters are distinguishable. Prove that there is no returning sequence
that switches two counters and returns the rest to their original positions.

C6 (Brian Hamrick) Hamster is playing a game on an m × n chessboard. He places a
rook anywhere on the board and then moves it around with the restriction that every
vertical move must be followed by a horizontal move and every horizontal move must
be followed by a vertical move. For what values of m,n is it possible for the rook to

2



visit every square of the chessboard exactly once? A square is only considered visited
if the rook was initially placed there or if it ended one of its moves on it.

C7 (Brian Hamrick) The game of circulate is played with a deck of kn cards each with
a number in 1, 2, . . . , n such that there are k cards with each number. First, n piles
numbered 1, 2, . . . , n of k cards each are dealt out face down. The player then flips
over a card from pile 1, places that card face up at the bottom of the pile, then next
flips over a card from the pile whose number matches the number on the card just
flipped. The player repeats this until he reaches a pile in which every card has already
been flipped and wins if at that point every card has been flipped. Hamster has grown
tired of losing every time, so he decides to cheat. He looks at the piles beforehand
and rearranges the k cards in each pile as he pleases. When can Hamster perform this
procedure such that he will win the game?

C8 (David Yang) A tree T is given. Starting with the complete graph on n vertices,
subgraphs isomorphic to T are erased at random until no such subgraph remains. For
what trees does there exist a positive constant c such that the expected number of
edges remaining is at least cn2 for all positive integers n?

G1 (Carl Lian) Let ABC be a triangle. Let A1, A2 be points on AB and AC respectively
such that A1A2 ‖ BC and the circumcircle of 4AA1A2 is tangent to BC at A3. Define
B3, C3 similarly. Prove that AA3, BB3, and CC3 are concurrent.

G2 (Brian Hamrick) Given a triangle ABC, a point P is chosen on side BC. Points M
and N lie on sides AB and AC, respectively, such that MP ‖ AC and NP ‖ AB.
Point P is reflected across MN to point Q. Show that triangle QMB is similar to
triangle CNQ.

G3 (Evan O’Dorney) A circle ω not passing through any vertex of 4ABC intersects each
of the segments AB, BC, CA in 2 distinct points. Prove that the incenter of 4ABC
lies inside ω.

G4 (Amol Aggarwal) Let ABC be a triangle with circumcircle ω, incenter I, and A-
excenter IA. Let the incircle and the A-excircle hit BC at D and E, respectively, and
let M be the midpoint of arc BC without A. Consider the circle tangent to BC at D
and arc BAC at T . If TI intersects ω again at S, prove that SIA and ME meet on ω.

G5 (Carl Lian) Determine all (not necessarily finite) sets S of points in the plane such
that given any four distinct points in S, there is a circle passing through all four or a
line passing through some three.

G6 (Carl Lian) Let ABC be a triangle with circumcircle Ω. X and Y are points on Ω
such that XY meets AB and AC at D and E, respectively. Show that the midpoints
of XY , BE, CD, and DE are concyclic.
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N1 (Wenyu Cao) For a positive integer n, let µ(n) =

{
0 if n is not squarefree

(−1)k if n is a product of k primes

and σ(n) be the sum of the divisors of n. Prove that for all n we have∣∣∣∣∣∣
∑
d|n

µ(d)σ(d)

d

∣∣∣∣∣∣ ≥ 1

n

and determine when equality holds.

N2 (Tim Chu) Given a prime p, show that(
1 + p

p−1∑
k=1

k−1

)2

≡ 1 + p2
p−1∑
k=1

k−2 (mod p4).

N3 (Travis Hance) Prove that there are infinitely many quadruples of integers (a, b, c, d)
such that

a2 + b2 + 3 = 4ab

c2 + d2 + 3 = 4cd

4c3 − 3c = a

N4 (Evan O’Dorney) Let r and s be positive integers. Define a0 = 0, a1 = 1, and an =

ran−1 + san−2 for n ≥ 2. Let fn = a1a2 · · · an. Prove that
fn

fkfn−k
is an integer for all

integers n and k such that 0 < k < n.

N5 (Brian Hamrick) Find the set S of primes such that p ∈ S if and only if there exists
an integer x such that x2010 + x2009 + · · ·+ 1 ≡ p2010 (mod p2011).
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English Language Master’s Open

Day I 8:00 AM – 12:30 PM

June 18, 2011

Write your number and team abbreviation, but not your name, on top of all pages turned in.

1. Let ABCD be a convex quadralateral. Let E, F,G,H be points on segments AB,BC,

CD,DA, respectively, and let P be intersection of EG and FH . Given that quadrilaterals

HAEP,EBFP, FCGP,GDHP all have inscribed circles, prove that ABCD also has an

inscribed circle.

2. Wanda the Worm likes to eat Pascal’s triangle. One day, she starts at the top of the

triangle and eats
(
0
0

)
= 1. Each move, she travels to an adjacent positive integer and eats

it, but she can never return to a spot that she has previously eaten. If Wanda can never

eat numbers a, b, c such that a + b = c, proof that it is possible for her to eat 100, 000

numbers in the first 2011 rows given that she is not restricted to traveling only in the first

2011 rows.

(Here, the n+1st row of Pascal’s triangle consists of entries of the form
(
n
k

)
for integers 0 ≤

k ≤ n. Thus, the entry
(
n
k

)
is considered adjacent to the entries

(
n−1
k−1

)
,
(
n−1
k

)
,
(

n
k−1

)
,
(

n
k+1

)
,(

n+1
k

)
,
(
n+1
k+1

)
.)

3. Determine whether there exists a sequence {an}∞n=0 of real numbers such that the following

holds:

• For all n ≥ 0, an �= 0.

• There exist real numbers x and y such that an+2 = xan+1 + yan for all n ≥ 0.

• For all positive real numbers r, there exists positive integers i and j such that

|ai| < r < |aj |.

Note: Our Engrish level beginner. Please excuse us any typos and us help fix mistake.



English Language Master’s Open

Dai II 8:00 AM – 12:30 PM

June 19, 2011

Write your number and team abbreviation, but not your name, on top of all pages turned in.

4. Find all functions f : R+ �→ R+, where R+ denotes the positive reals, such that whenever

a > b > c > d > 0 are reel numbers with ad = bc,

f(a+ d) + f(b− c) = f(a− d) + f(b+ c).

5. Let p > 13 be a prime of the the form 2q+1, where q is prime. Find the number of ordered

pairs of integers (m,n) such that 0 ≤ m < n < p− 1 and

3m + (−12)m ≡ 3n + (−12)n (mod p).

6. Consider the infinite grid of lattice points in Z3. Little D and Big Z play a game, where

Little D first loses a shoe on an unmunched point in the grid. Then, Big Z munches a

shoe-free plane perpendicular to one of the coordinate axes. They continue to alternature

turns in this fashion, with Little D’s goal to loose a shoe on each of n consecutive lattice

points on a line parrallel to one of the coordinate axes. Determine all n for which Little

D can accomplish his goal.

Note: Our Engrish level beginner. Please excuse us any typos and us help fix mistake.



37th English Language Master’s Open

1. Let ABCD be a convex quadralateral. Let E, F,G,H be points on segments AB,BC,

CD,DA, respectively, and let P be intersection of EG and FH . Given that quadrilaterals

HAEP,EBFP, FCGP,GDHP all have inscribed circles, prove that ABCD also has an

inscribed circle.

Solution: Let us label the points of tangency of the four given incircles as shown in the

diagram.

Then, to prove that ABCD has an inscribed circle, it suffices to show that AB + CD =

AD+BC. Since common tangents from a point to a circle share the same length, we get

AB + CD = AD +BC

⇔ (AA1+A1B2+B2B)+(CC1+C1D2+D2D) = (AA2+A2D1+D1D)+(BB1+B1C2+C2C)

⇔ A1B2 + C1D2 = A2D1 +B1C2.

We first want to show that A2D1 = A4D3. IfAD||EG, then this is true because A2, D1, D3, A4

form the corners of a rectangle. Otherwise, consider the intersection of EG and AD. Note
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that, of the incircles of AEPH and HPGD, one is an incircle and the other an excircle

of the triangle with the intersection point as a vertex.

Consequently, A4 is the reflection of D3 over the midpoint of HP and we have

A2D1 = A2H +HD1 = HA4 +HD3 = PD3 + A4P = A3P + PD4 = A3D4.

Similarly, B1C2 = B3C4, A1B2 = A3B4, and D2C1 = D4C3.

Combining, we get

A2D1 +B1C2 =A4D3 +B3C4

=PA4 + PD3 + PB + 3 + PC4

=PA3 + PD4 + PB4 + PC3

=A3B4 +D4C3

=A1B2 + C1D2,

so we are done.

This problem was proposed by Evan O’Dorney.

2. Wanda the Worm likes to eat Pascal’s triangle. One day, she starts at the top of the

triangle and eats
(
0
0

)
= 1. Each move, she travels to an adjacent positive integer and eats

it, but she can never return to a spot that she has previously eaten. If Wanda can never

eat numbers a, b, c such that a + b = c, proof that it is possible for her to eat 100, 000

numbers in the first 2011 rows given that she is not restricted to traveling only in the first

2011 rows.

(Here, the n+1st row of Pascal’s triangle consists of entries of the form
(
n
k

)
for integers 0 ≤

k ≤ n. Thus, the entry
(
n
k

)
is considered adjacent to the entries

(
n−1
k−1

)
,
(
n−1
k

)
,
(

n
k−1

)
,
(

n
k+1

)
,(

n+1
k

)
,
(
n+1
k+1

)
.)

Solution: We will prove by induction on n that it is possible for Wanda to eat 3n numbers

in the first 2n rows of Pascal’s triangle. Our inductive hypothesis includes the following

conditions on the first 2n rows of Pascal’s triangle when all the entries are taken modulo

2:

• Row 2n contains only odd numbers.

• The 2n rows contain a total of 3n odd numbers.
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• The triangle of rows has 120 degree rotational symmetry.

• There is a path for Wanda to munch that starts at any corner of these rows, contains

all the odd numbers, and ends at any other corner.

Our base case is n = 1; it is not difficult to check that all of these conditions hold. Wanda’s

path in these two rows is
(
0
0

)→ (
0
1

)→ (
1
1

)
.

Now, assume that these hold for the first 2m rows of Pascal’s triangle. We will show that

they also hold for the first 2m+1 rows. Note that a single 1 surrounded by 2m − 1 0’s to

either side generated the first 2m rows since each element is equal to the sum of the two

numbers directly above it. However, by our inductive hypothesis, all of the entries in the

2m row were 1’s. Hence, the first and last entires of the 2m+1 row are also both 1, and the

remainder of the entires are 0. Consequently, we note that these 1’s and 0’s generate two

other copies of the first 2m rows of Pascal’s triangle, along with an inverted triangle of all

0’s in the middle.

Now it suffices to check that our conditions hold:

• As row 2m+1 simply contains two side-by-side copies of the 2mth row modulo 2, it

also consists all of 1’s.

• The first 2m+1 rows contain three copies of the first 2m rows along with a triangle of

0’s, so they contain 3(3m) = 3m+1 odd numbers.

• As each of the three 2m row triangles had rotational symmetry, so does the larger

one.

• By our inductive hypothesis, Wanda can travel from
(
0
0

)
to
(
2m−1

0

)
and eat all the

odd numbers in those rows. She can then travel to
(
2m

0

)
, eat all the numbers in the

lower-left triangle and end at
(
2m+1−1
2m−1

)
, travel to

(
2m+1−1

2m

)
, eat all the odd numbers

in the lower-right triangle, and finally end at
(
2m+1−2
2m+1−1

)
. Due to rotational symmetry,

she can also start and end at any corner.

We have now proved our induction.

Note that if Wanda only eats odd numbers, then she will never eat three numbers a, b, c

such that a + b = c. We have 210 < 2011 < 2048 = 211.

It suffices to check that there are sufficient odd numbers in the first 2011 rows. We have

showed that there are 311 odd numbers in the first 2048 rows. Also, row n has n elements
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and thus contains at most n odd numbers. Hence, there are at least

311 − 2048− 2047− . . .− 2012 = 311 − 1

2
(2048 + 2012)(2048− 2011) > 1000000

odd numbers in the first 2011 rows.

This problem was proposed by Linus Hamilton.

3. Determine whether there exists a sequence {an}∞n=0 of real numbers such that the following

holds:

• For all n ≥ 0, an �= 0.

• There exist real numbers x and y such that an+2 = xan+1 + yan for all n ≥ 0.

• For all positive real numbers r, there exists positive integers i and j such that

|ai| < r < |aj |.

Solution: The answer is yes.

Let xn = 22
···2︸︷︷︸

2n 2’s

. Then, let θ = π
2

(
1
x1

+ 1
x2

+ . . .
)
, and let r = 2 and an = rn cos(nθ).

We will prove that this sequences satisfies the three given conditions.

First, note that

an+2 = 2r cos(θ)an+1 − r2an

for all n by the addition formula for cosine, so the recursion condition is satisfied by setting

x = 2r cos(θ) and y = −r2.

Second, we note that if there exists any integer n such that an = 0, then we would have

nθ = π(k + 1
2
) for some k ∈ {0, 1, 2, . . .}, implying that θ

π
is rational. However, we have

θ

π
=

1

2

(
1

x1
+

1

x2
+ . . .

)
,

which has a non-periodic binary expansion and is therefore irrational. Hence, we know

hat the second condition is satisfied.

Third, consider the subsequence

bn = axn

= rxn cos(xnθ)

= rxncos

(
π

2

∞∑
k=1

xn

xk

)
.
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Where a =
∑n

k=1
xn

xk
is an odd integer, we note that

|bn| < |r|xn

∣∣∣∣∣cos
(
π

2

∞∑
k=1

xn

xk

)∣∣∣∣∣
= |r|xn

∣∣∣∣∣cos
(
π

2

(
a+

∞∑
k=n+1

xn

xk

))∣∣∣∣∣
= |r|xn

∣∣∣∣∣sin
(
π

2

∞∑
k=n+1

xn

xk

)∣∣∣∣∣
≤ 2xn

π

2

∞∑
k=n+1

xn

xk

≤ 2xn
π

2

∞∑
k=n+!

xn

xn+1 · 2k−n−1

= 2xn · π · xn

xn+1

,

which becomes arbitrarily small as n approaches infinity.

Consequently, {an} has a subsequence with arbitrarily small magnitude. By Kronecker’s

Theorem, there is also a sequence n1, n2, . . . with {n1θ
2π

} ∈ [−π
6
, π
6

]
for i = 1, 2, . . .. Then,

the sequence an1 , an2 , an3, . . . tends to infinity. Thus, {an} has both a subsequence with

magnitude tending to 0 and a subsequence with magnitude tending to infinity, so the third

property also holds.

This problem was proposed by Alex Zhu.

4. Find all functions f : R+ �→ R
+, where R

+ denotes the positive reals, such that whenever

a > b > c > d > 0 are reel numbers with ad = bc,

f(a+ d) + f(b− c) = f(a− d) + f(b+ c).

Solution: Since f(a+d)−f(a−d) only depends on ad, we can have a function g mapping

positive reals to reals such that whenever a > d,

g(ad) = f(a+ d)− f(a− d).
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Also,

g(kad+ k(k + 1)d2) = g((a+ (k + 1)d)(kd))

= f(a+ (2k + 1)d)− f(a+ d)

and

g((k + 1)ad+ k(k + 1)d2) = g((a+ kd)((k + 1)d))

= f(a+ (2k + 1)d)− f(a− d)

= g(ad) + g(kad+ k(k + 1)d2)

for any constant k > 0.

Let a = 2d, and let x = d2. Then we have the following:

g((k2 + 3k + 2)x) = g(2x) + g((k2 + 3k)x)

However, (k2+3k)x is surjective over the positive reals as k > 0, so if we let y = (k2+3k)x,

we obtain

g(x+ y) = g(x) + g(y)

for all positive real numbers x and y. Consequently, for any positive real number x, we

can always find a unique λ > 0 such that λ(λ+ 1) = x. Thus,

g(x) = g(λ(λ+ 1)) = f(2λ+ 1)− f(1) ≥ −f(1)

Because g is bounded below and satisfies Cauchy’s Functional Equation, there exists a real

number a such that g(x) = ax for all x > 0. That gives, for u > 1,

f(u) = f(1) + g((u2 − 1)/4) =
a

4
u2 +

−a + 4f(1)

4

and for u < 1

f(u) = f(1)− g((1− u2)/4) =
a

4
u2 +

−a + 4f(1)

4

Thus there exist constants c, d such that for u �= 1, f(u) = cu2 + d. Finally,

f(1) = f(4− 3) = f(4 + 3) + f(6− 2)− f(6 + 2) = 49c+ d+ 16c+ d− 64c− d = c+ d

Thus equations of the form f(u) = cu2 + d for all u > 0 are the only possible solutions. It

is not hard to see that this is a solution to the functional equation if and only if c and d

are nonnegative real numbers which are not both zero.

This problem was proposed by Calvin Deng.
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5. Let p > 13 be a prime of the the form 2q+1, where q is prime. Find the number of ordered

pairs of integers (m,n) such that 0 ≤ m < n < p− 1 and

3m + (−12)m ≡ 3n + (−12)n (mod p).

Solution:

Lemma 1: −4 is a primitive root modulo p.

Proof of Lemma 1: Note that ordp(−4)|p−1 = 2q, so ordp(−4) is one of 1, 2, q, 2q. Because

−4 �≡ 1 (mod p) we have ordp(−4) �= q). As 16 = 4n �≡ 1 (mod p), we have ordp(−4) �= 2.

Also, we have (−4

p

)
=

(−1

p

)
·
(
4

p

)
= −1 · 1 · −1,

since
(

−1
p

)
= 1 follows from p > 13 ⇒ p−1

2
= q being odd.

Thus, following from the fact that −4 is not a quadratic residue modulo p, we have that

2 � | p− 1

ordp(−4)
=

2q

ordp(−4)

⇒ 2 · ordp(−4) � | 2q
⇒ ordp(−4) � | q

Consequently, ordp(−4) = 2q, as desired.

Lemma 2: The order of 3 modulo p is exactly q.

Proof of Lemma 2: Note that ordp(3)|p− 1 = 2q, so ordp(3) is one of 1, 2, q, 2q. Because

3 �≡ 1 (mod p), we have ordp(3) �= 1. As 32 = 9 �≡ 1 (mod p), we have ordp(3) �= 2. Then,

we have

p = 2q + 1

≡ 2 · 1 + 1 or 2 · 2 + 1 (mod 3)

≡ 0 or 2 (mod 3)

Because p > 13, we know that q �= 3 and p �= 3, giving(p
3

)
=

(
2

3

)
= 1.
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Also, by quadratic reciprocity, we have(
3

p

)
·
(p
3

)
= (−1)

(3−1)(p−1)
4(

3

p

)
(−1) = (−1)q

= −1

⇒
(
3

p

)
= 1.

We now know that 3 is a quadratic residue modulo p, so ordp(3) �= 2q, giving us ordp(3) = q,

as desired.

Lemma 3: −12 is a primitive root modulo p.

Proof of Lemma 3: Note that ordp(−12)|p − 1 = 2q, so ordp(−12) is one of 1, 2, q, 2q.

Because −12 �≡ 1 (mod p), we have ordp(−12) �= 1. As (−12)2 = 144 �≡ 1 (mod p), we

have ordp(−12) �= 2. Then, after substituting for the values found in Lemma 1 and Lemma

2, we obtain (−12

p

)
=

(−1

p

)
·
(
4

p

)
·
(
3

p

)
= (−1) · (1) · (1)
= −1.

Thus, −12 is not a quadratic residue modulo p, giving us

2 � | p− 1

ordp(−12)
=

2q

ordp(−12)

⇒ ordp(−12) � | q

It follows that ordp(−12) = 2q, as desired.

Main Proof: We now simplify the given equation:

3m + (−12)m ≡ 3n + (−12)n (mod p)

≡ 3n−m · 3m + 3n−m · 3m · (−4)n (mod p)

1 + (−4)m ≡ 3n−m + 3n−m · (−1)n (mod p)

1− 3n−m ≡ 3n−m · (−4)n − (−4)m (mod p)

≡ (−4)m · ((−12)n−m − 1) (mod p).

8



We ignore for the moment the condition that m < n and count all pairs m,n ∈ Zp−1 = Z2q.

So, if n �≡ m (mod 2q), then (−12)n−m − 1 �≡ 0 (mod p), giving us

(−4)m ≡ (1− 3n−m)((−12)n−m − 1)−1 (mod p).

Because −4 is primitive modulo p, we have that any non-zero residue of (−4)m (mod p)

uniquely determines the residue ofm (mod 2q). So each non-zero residue of n−m (mod 2q)

uniquely determines m (mod 2q), so long as

3n−m − 1 �≡ 0 (mod p) ⇔ q � |n−m.

Consequently, for each (n − m) ∈ {1, 2, . . . , q − 1, q + 1, q + 2, . . . , 2q − 1} (mod 2q), we

unitely determine the ordered pair (m,n) ∈ Z
2
2q. However, on taking remainders on

divison by 2q of m,n, we must have m < n. Thus, for each x �≡ q, 0, the solutions for

n−m ≡ x (mod 2q) and n−m ≡ −1 (mod 2q) give exactly 1 solution (m,n) with m < n.

Thus, we have a total of 2q−2
2

= q − 1 solutions.

This problem was proposed by Alex Zhu.

6. Consider the infinite grid of lattice points in Z
3. Little D and Big Z play a game, where

Little D first loses a shoe on an unmunched point in the grid. Then, Big Z munches a

shoe-free plane perpendicular to one of the coordinate axes. They continue to alternature

turns in this fashion, with Little D’s goal to loose a shoe on each of n consecutive lattice

points on a line parrallel to one of the coordinate axes. Determine all n for which Little

D can accomplish his goal.

Solution: We claim that Little D can accomplish this for all n.

We will start by separating out the three coordinate axes: thus, if Little D loses a shoe

at the point (i, j, k) for integers i, j, and k, he plays on i on the x-axis, j on the y-axis,

and k on the z-axis in the same move. Meanwhile, when Big Z munches a plane, he plays

on only one point on one of the coordinate axes. Hence, since Big Z can only munch a

shoe-free plane, he cannot munch point l on a particular axis if Little D has already placed

a shoe there.

We will call a string of points marked (by shoes) on one of these coordinate axes unbounded

if Big Z has not munched any point on that axis within 2n+ 1 of at least one endpoint of

the string.

9



Lemma: For any integersm and l, Little D can create l unbounded strings ofm consecutive

points on a single coordinate axis.

Proof of lemma: We will prove this by induction on m.

Our base case is m = 1. Then, we note that if Little D makes �1.5l� triplets of moves

over the three axes, making sure that he distributes any marked points in the same axis

at least 5n apart, then Big Z can bound at most �1.5l� strings because he can only bound

at most one string on each move. However, this leaves 3x unbounded strings of length 1;

by the pigeonhole principle, at least l of these must be in the same cooordinate axis.

Now, suppose that this is true for some m. We will show that it is also true for

m + 1. Without loss of generality, we note from our induction hypothesis that Little D

can construct �x(m+1)
2

� unbounded strings of length m on the x-axis. Consequently, he

can create m + 3 strings of length m + 1 in m + 1 moves: in each move, he lengthens

one unbounded string of the x-axis, while on each of the y and z-axes he builds up a new

string of m+1 marked points. However, Big Z can, in these m+ 1 moves, bound at most

m + 1 of these strings. Hence, Little D can construct at least 2 strings of length m + 1

for every m+ 1 strings of length m used up. It follows that he can achieve x unbounded

strings of length m+ 1. We have now proved our desired induction.

Main Proof: Now, without loss of generality, by our lemma Little D can mark n consecutive

points on the x-axis. Then, he has established n consecutive yz-planes that Big Z can never

much. Suppose that one of the points he has played on is (i, j, k) for some i, j, k ∈ Z. Then,

Big Z can never munch any part of the line y = j, z = k in those n consecutive xy planes.

Hence Little D can lose shoes in the remainder of those n points over his next few moves,

at which point he has achieved his goal.

This problem was proposed by David Yang.
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Every Little Mistake =⇒ 0

Lincoln, Nebraska

Day I 8 a.m. - 12:30 p.m.

June 16, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale, clearly labeled
diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure
to meet any of these requirements will result in an automatic 0 for that problem.

1. In acute triangle ABC, let D,E, F denote the feet of the altitudes from A,B,C, respectively, and let
ω be the circumcircle of 4AEF . Let ω1 and ω2 be the circles through D tangent to ω at E and F ,
respectively. Show that ω1 and ω2 meet at a point P on BC other than D.

2. Find all ordered pairs of positive integers (m,n) for which there exists a set C = {c1, . . . , ck} (k ≥ 1)
of colors and an assignment of colors to each of the mn unit squares of a m×n grid such that for every
color ci ∈ C and unit square S of color ci, exactly two direct (non-diagonal) neighbors of S have color
ci.

3. Let f, g be polynomials with complex coefficients such that gcd(deg f, deg g) = 1. Suppose that there
exist polynomials P (x, y) and Q(x, y) with complex coefficients such that f(x)+g(y) = P (x, y)Q(x, y).
Show that one of P and Q must be constant.

MOP 2012
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Every Little Mistake =⇒ 0

Lincoln, Nebraska

Day II 8 a.m. - 12:30 p.m.

June 17, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale, clearly labeled
diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure
to meet any of these requirements will result in an automatic 0 for that problem.

4. Let a0, b0 be positive integers, and define ai+1 = ai + b
√
bic and bi+1 = bi + b√aic for all i ≥ 0. Show

that there exists a positive integer n such that an = bn.

5. Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC such that
BD = CE and D lies between B and E. Suppose there exists a point P inside ABC such that
PD ‖ AE and ∠PAB = ∠EAC. Prove that ∠PBA = ∠PCA.

6. A diabolical combination lock has n dials (each with c possible states), where n, c > 1. The dials are
initially set to states d1, d2, . . . , dn, where 0 ≤ di ≤ c− 1 for each 1 ≤ i ≤ n. Unfortunately, the actual
states of the dials (the di’s) are concealed, and the initial settings of the dials are also unknown. On a
given turn, one may advance each dial by an integer amount ci (0 ≤ ci ≤ c− 1), so that every dial is
now in a state d′i ≡ di + ci (mod c) with 0 ≤ d′i ≤ c − 1. After each turn, the lock opens if and only
if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically
shifts the di’s by k (so that for every i, di is replaced by di−k, where indices are taken modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the
choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

MOP 2012
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Every Little Mistake =⇒ 0 Shortlist

MOP 2012

June 12, 2012

Note: The problem czars’ recommendations are bolded.
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1 Geometry

G1. (Ray Li) In acute triangle ABC, let D,E, F denote the feet of the altitudes from A,B,C, respectively,
and let ω be the circumcircle of 4AEF . Let ω1 and ω2 be the circles through D tangent to ω at E
and F , respectively. Show that ω1 and ω2 meet at a point P on BC other than D.

G2. (Ray Li) In triangle ABC, P is a point on altitude AD. Q,R are the feet of the perpendiculars from
P to AB,AC, and QP,RP meet BC at S and T respectively. the circumcircles of BQS and CRT
meet QR at X,Y .

a) Prove SX, TY,AD are concurrent at a point Z.

b) Prove Z is on QR iff Z = H, where H is the orthocenter of ABC.

G3. (Alex Zhu) ABC is a triangle with incenter I. The foot of the perpendicular from I to BC is D, and
the foot of the perpendicular from I to AD is P . Prove that ∠BPD = ∠DPC.

G4. (Ray Li) Circles Ω and ω are internally tangent at point C. Chord AB of Ω is tangent to ω at E, where
E is the midpoint of AB. Another circle, ω1 is tangent to Ω, ω, and AB at D,Z, and F respectively.
Rays CD and AB meet at P . If M is the midpoint of major arc AB, show that tan∠ZEP = PE

CM .

G5. (Calvin Deng) Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC
such that BD = CE and D lies between B and E. Suppose there exists a point P inside ABC such
that PD ‖ AE and ∠PAB = ∠EAC. Prove that ∠PBA = ∠PCA.

G6. (Ray Li) In 4ABC, H is the orthocenter, and AD,BE are arbitrary cevians. Let ω1, ω2 denote the
circles with diameters AD and BE, respectively. HD,HE meet ω1, ω2 again at F,G. DE meets ω1, ω2

again at P1, P2 respectively. FG meets ω1, ω2 again Q1, Q2 respectively. P1H,Q1H meet ω1 at R1, S1

respectively. P2H,Q2H meet ω2 at R2, S2 respectively. Let P1Q1 ∩P2Q2 = X, and R1S1 ∩R2S2 = Y .
Prove that X,Y,H are collinear.

G7. (Alex Zhu) Let 4ABC be an acute triangle with circumcenter O such that AB < AC, let Q be the
intersection of the external bisector of ∠A with BC, and let P be a point in the interior of 4ABC
such that 4BPA is similar to 4APC. Show that ∠QPA + ∠OQB = 90◦.

2



2 Algebra

A1. (Ray Li, Max Schindler) Let x1, x2, x3, y1, y2, y3 be nonzero real numbers satisfying x1 + x2 + x3 =
0, y1 + y2 + y3 = 0. Prove that

x1x2 + y1y2√
(x2

1 + y21)(x2
2 + y22)

+
x2x3 + y2y3√

(x2
2 + y22)(x2

3 + y23)
+

x3x1 + y3y1√
(x2

3 + y23)(x2
1 + y21)

≥ −3

2

A2. (Owen Goff) Let a, b, c be three positive real numbers such that a ≤ b ≤ c and a + b + c = 1. Prove
that

a + c√
a2 + c2

+
b + c√
b2 + c2

+
a + b√
a2 + b2

≤ 3
√

6(b + c)2√
(a2 + b2)(b2 + c2)(c2 + a2)

.

A3. (David Yang) Let a0, b0 be positive integers, and define ai+1 = ai + b
√
bic and bi+1 = bi + b√aic for

all i ≥ 0. Show that there exists a positive integer n such that an = bn.

A4. (David Yang) Prove that if m,n are relatively prime positive integers, xm − yn is irreducible in the
complex numbers. (A polynomial P (x, y) is irreducible if there do not exist nonconstant polynomials
f(x, y) and g(x, y) such that P (x, y) = f(x, y)g(x, y) for all x, y.)

A5. (Calvin Deng) Let a, b, c ≥ 0. Show that

(a2 + 2bc)2012 + (b2 + 2ca)2012 + (c2 + 2ab)2012 ≤ (a2 + b2 + c2)2012 + 2(ab + bc + ca)2012.

A6. (Victor Wang) Let f, g be polynomials with complex coefficients such that gcd(deg f, deg g) = 1.
Suppose that there exist polynomials P (x, y) and Q(x, y) with complex coefficients such that f(x) +
g(y) = P (x, y)Q(x, y). Show that one of P and Q must be constant.

Note: A4 is a special case of A6, but is significantly easier.

A7. (Alex Zhu) Find all functions f : Q → R such that f(x)f(y)f(x + y) = f(xy)(f(x) + f(y)) for all
x, y ∈ Q.

A8. (David Yang) Let A1A2A3A4A5A6A7A8 be a cyclic octagon. Let Bi by the intersection of AiAi+1 and
Ai+3Ai+4. (Take A9 = A1, A10 = A2, etc.) Prove that B1, B2, . . . , B8 lie on a conic.

3



3 Number Theory

N1. (David Yang, Alex Zhu) Find all positive integers n such that 4n + 6n + 9n is a square.

N2. (Anderson Wang) For positive rational x, if x is written in the form p
q with p, q positive relatively

prime integers, define f(x) = p + q. For example, f(1) = 2. Prove that if f(x) = f(mxn ) for rational x
and positive integers m,n, then f(x) divides |m− n|.
Possible part (b): Let n be a positive integer. If all x which satisfy f(x) = f(2nx) also satisfy
f(x) = 2n − 1, find all possible values of n.

N3. (Alex Zhu) Let s(k) be the number of ways to express k as the sum of distinct 2012th powers. Show
that for every real number c there exists an integer n such that s(n) > cn.

N4. (Lewis Chen) Do there exist positive integers b, n > 1 such that when n is expressed in base b, there
are more than n distinct permutations of its digits? For example, when b = 4 and n = 18, 18 = 1024,
but 102 only has 6 digit arrangements. (Leading zeros are allowed in the permutations.)

N5. (Ravi Jagadeesan) Let n > 2 be a positive integer and let p be a prime. Suppose that the nonzero
integers are colored in n colors. Let a1, a2, . . . , an be integers such that for all 1 ≤ i ≤ n, pi - ai and
pi−1 | ai. In terms of n, p, and {ai}ni=1, determine if there must exist integers x1, x2, . . . , xn of the
same color such that a1x1 + a2x2 + · · ·+ anxn = 0.

N6. (Calvin Deng) Prove that if a and b are positive integers and ab > 1, then⌊
(a− b)2 − 1

ab

⌋
=

⌊
(a− b)2 − 1

ab− 1

⌋
Here bxc denotes the greatest integer not exceeding x.

N7. (Bobby Shen) A diabolical combination lock has n dials (each with c possible states), where n, c > 1.
The dials are initially set to states d1, d2, . . . , dn, where 0 ≤ di ≤ c−1 for each 1 ≤ i ≤ n. Unfortunately,
the actual states of the dials (the di’s) are concealed, and the initial settings of the dials are also
unknown. On a given turn, one may advance each dial by an integer amount ci (0 ≤ ci ≤ c − 1), so
that every dial is now in a state d′i ≡ di + ci (mod c) with 0 ≤ d′i ≤ c − 1. After each turn, the lock
opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer
k and cyclically shifts the di’s by k (so that for every i, di is replaced by di−k, where indices are taken
modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the
choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

N8. (Victor Wang) Fix two positive integers a, k ≥ 2, and let f ∈ Z[x] be a polynomial. Suppose that
for all sufficiently large positive integers n, there exists a rational number x satisfying f(x) = f(an)k.
Prove that there exists a polynomial g ∈ Q[x] such that f(g(x)) = f(x)k for all real x.

N9. (David Yang) Are there positive integers m,n such that there exist 2012 positive integers x such that
both m− x2 and n− x2 are perfect squares?
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4 Combinatorics

C1. (David Yang) Let n ≥ 2 be a positive integer. Given a sequence si of n distinct real numbers, define the
“class” of the sequence to be the sequence a1, a2, . . . , an−1, where ai is 1 if si+1 > si and −1 otherwise.

Find the smallest integer m such that there exists a sequence wi such that for every possible class of
a sequence of length n, there is a subsequence of wi that has that class.

C2. (David Yang) Let A be the set of positive integers with at most 10 digits and with all digits 0 or 1.
Let B be the set of positive integers with at most 10 digits and with all digits 0,1,2, or 3. Define the
difference set X − Y of two sets of reals X, Y to be the set of elements z of the form x − y, where
x ∈ X and y ∈ Y . Prove that for any finite set of positive integers C, |C−A| ≤ |C−B| ≤ 1024|C−A|.

C3. (David Yang) Find all ordered pairs of positive integers (m,n) for which there exists a set C =
{c1, . . . , ck} (k ≥ 1) of colors and an assignment of colors to each of the mn unit squares of a m × n
grid such that for every color ci ∈ C and unit square S of color ci, exactly two direct (non-diagonal)
neighbors of S have color ci.

C4. (Calvin Deng) A tournament on 2k vertices contains no 7-cycles. Show that its vertices can be par-
titioned into two sets, each with size k, such that the edges between vertices of the same set do not
determine any 3-cycles.

C5. (Linus Hamilton) Form the infinite graph A by taking the set of primes p congruent to 1 (mod 4), and
connecting p and q if they are quadratic residues modulo each other. Do the same for a graph B with
the primes 1 (mod 8). Show A and B are isomorphic to each other.

C6. (Linus Hamilton) Consider a directed graph G with n vertices, where 1-cycles and 2-cycles are permit-
ted. For any set S of vertices, let N+(S) denote the out-neighborhood of S (i.e. set of successors of
S), and define (N+)k(S) = N+((N+)k−1(S)) for k ≥ 2.

For fixed n, let f(n) denote the maximum possible number of distinct sets of vertices in {(N+)k(X)}∞k=1.
Show that there exists n > 2012 such that f(n) < 1.0001n.

C7. (David Yang) We have a graph with n vertices and at least n2/10 edges. Each edge is colored in one
of c colors such that no two incident edges have the same color. Assume that no cycles of size 10 have
the same set of colors. Prove that there is a constant k such that c is at least kn

8
5 for any n.

C8. (Victor Wang) Consider the equilateral triangular lattice in the complex plane defined by the Eisenstein
integers; let the ordered pair (x, y) denote the complex number x + yω for ω = e2πi/3. We define an
ω-chessboard polygon to be a (non self-intersecting) polygon whose sides are situated along lines of
the form x = a or y = b, where a and b are integers. These lines divide the interior into unit triangles,
which are shaded alternately black and white so that adjacent triangles have different colors. To tile
an ω-chessboard polygon by lozenges is to exactly cover the polygon by non-overlapping rhombuses
consisting of two bordering triangles. Finally, a tasteful tiling is one such that for every unit hexagon
tiled by three lozenges, each lozenge has a black triangle on its left (defined by clockwise orientation)
and a white triangle on its right (so the lozenges are BW, BW, BW in clockwise order).

a) Prove that if an ω-chessboard polygon can be tiled by lozenges, then it can be done so tastefully.

b) Prove that such a tasteful tiling is unique.
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15th Everyone Lives at Most Once

Lincoln, Nebraska

Day I 8:00 AM - 12:30 PM

June 15, 2013

1. Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote
the number of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum
possible value of A?

2. Let a, b, c be positive reals satisfying a + b + c = 7
√
a + 7
√
b + 7
√
c. Prove that aabbcc ≥ 1.

3. Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and A1, A2, . . . , A2013

be 2013 (possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi − 1} for i = 1, 2, . . . , 2013. Prove that
there is a positive integer N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Copyright c© MOP 2013 at Lincoln, Nebraska
Committee on the ELMO
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15th Everyone Lives at Most Once

Lincoln, Nebraska

Day II 8:00 AM - 12:30 PM

June 16, 2013

4. Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and
AC again at S and R, respectively. Segments BR and CS meet at L, and rays LR and LS
intersect ω at D and E, respectively. The internal angle bisector of ∠BDE meets line ER at
K. Prove that if BE = BR, then ∠ELK = 1

2∠BCD.

5. For what polynomials P (n) with integer coefficients can a positive integer be assigned to every
lattice point in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any
n× n× n grid of lattice points is divisible by P (n)?

6. Consider a function f : Z → Z such that for every integer n ≥ 0, there are at most 0.001n2

pairs of integers (x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible
that for some integer n ≥ 0, there are more than n integers a such that f(a) 6= a · f(1) and
|a| ≤ n?

Copyright c© MOP 2013 at Lincoln, Nebraska
Committee on the ELMO
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15th Everyone Lives at Most Once

ELMO 2013

Lincoln, Nebraska

OFFICIAL SOLUTIONS

1. Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote
the number of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum
possible value of A?

Proposed by Ray Li.

Answer. A ≥ 28.

Solution 1. Call a 3-set good iff it has average at least m, and let S be the family of good
sets.

The equality case A = 28 can be achieved when a1 = · · · = a8 = 0 and a9 = 1. Here m = 1
9 ,

and the good sets are precisely those containing a9. This gives a total of
(
8
2

)
= 28.

To prove the lower bound, suppose we have exactly N good 3-sets, and let p = N

(9
3)

denote

the probability that a randomly chosen 3-set is good. Now, consider a random permutation π
of {1, 2, . . . , 9}. Then the corresponding partition

⋃2
i=0{π(3i+ 1), π(3i+ 2), π(3i+ 3)} has at

least 1 good 3-set, so by the linearity of expectation,

1 ≤ E

[
2∑
i=0

[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]

]

=

2∑
i=0

[E[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]]

=

2∑
i=0

1 · p = 3p.

Hence N = p
(
9
3

)
≥ 1

3

(
9
3

)
= 28, establishing the lower bound. �

This problem and solution were proposed by Ray Li.

Remark. One can use double-counting rather than expectation to prove N ≥ 28. In any case,
this method generalizes effortlessly to larger numbers.

Solution 2. Proceed as above to get an upper bound of 28.

On the other hand, we will show that we can partition the
(
9
3

)
= 84 3-sets into 28 groups of 3,

such that in any group, the elements a1, a2, · · · , a9 all appear. This will imply the conclusion,
since if A < 28, then there are at least 57 sets with average at most m, but by pigeonhole
three of them must be in such a group, which is clearly impossible.

Consider a 3-set and the following array:

a1 a2 a3
a4 a5 a6
a7 a8 a9

Consider a set |S| = 3. We obtain the other two 3-sets in the group as follows:
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• If S contains one element in each column, then shift the elements down cyclically mod 3.

• If S contains one element in each row, then shift the elements right cyclically mod 3.
Note that the result coincides with the previous case if both conditions are satisfied.

• Otherwise, the elements of S are “constrained” in a 2×2 box, possibly shifted diagonally.
In this case, we get an L-tromino. Then shift diagonally in the direction the L-tromino
points in.

One can verify that this algorithm creates such a partition, so we conclude that A ≥ 28. �

This second solution was suggested by Lewis Chen.

2. Let a, b, c be positive reals satisfying a+ b+ c = 7
√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Proposed by Evan Chen.

Solution 1. By weighted AM-GM we have that

1 =
∑
cyc

(
7
√
a

a+ b+ c

)
=
∑
cyc

(
a

a+ b+ c
· 1

7
√
a6

)

≥
(

1

aabbcc

) 6/7
a+b+c

.

Rearranging yields aabbcc ≥ 1. �

This problem and solution were proposed by Evan Chen.

Remark. The problem generalizes easily to n variables, and exponents other than 1
7 . Specif-

ically, if positive reals x1 + · · · + xn = xr1 + · · · + xrn for some real number r 6= 1, then∏
i≥1 x

xi
i ≥ 1 if and only if r < 1. When r ≤ 0, a Jensen solution is possible using only the

inequality a+ b+ c ≥ 3.

Solution 2. First we claim that a, b, c < 5. Assume the contrary, that a ≥ 5. Let f(x) =
x − 7
√
x. Since f ′(x) > 0 for x ≥ 5, we know that f(a) ≥ 5 − 7

√
5 > 3. But this means that

WLOG b− 7
√
b < −1.5, which is clearly false since b− 7

√
b ≥ 0 for b ≥ 1, and b− 7

√
b ≥ − 7

√
b ≥ −1

for 0 < b < 1. So indeed a, b, c < 5.

Now rewrite the inequality as

∑
a ln a ≥ 0⇔

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥ 0.

Now note that if g(x) = x
6
7 lnx, then g′′(x) = 35−6 ln x

49x
8
7

> 0 for x ∈ (0, 5). Therefore g is convex

and we can use Jensen’s Inequality to get

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

) 6
7

ln

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

)
.

Since
∑
a =

∑
a

1
7 , it suffices to show that

∑
a

8
7 ≥

∑
a. But by weighted AM-GM we have

6a
8
7 + a

1
7 ≥ 7a =⇒ a

8
7 − a ≥ 1

6
(a− 7

√
a).
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Adding up the analogous inequalities for b, c gives the desired result. �

This second solution was suggested by David Stoner.

Solution 3. Here we unify the two solutions above.

It’s well-known that weighted AM-GM follows from (and in fact, is equivalent to) the convexity
of ex (or equivalently, the concavity of lnx), as

∑
wie

xi ≥ e
∑
wixi for reals xi and nonnegative

weights wi summing to 1. However, it also follows from the convexity of y ln y (or equivalently,
the concavity of yey) for y > 0. Indeed, letting yi = exi > 0, and taking logs, weighted
AM-GM becomes∑

wiyi ·
1

yi
log

1

yi
≥ (
∑

wiyi)

∑
wiyi · 1

yi∑
wiyi

log

∑
wiyi · 1

yi∑
wiyi

,

which is clear.

To find Evan’s solution, we can use the concavity of lnx to get
∑
a ln a−s ≤ (

∑
a) ln

∑
a·a−s∑

a =

0. (Here we take s = 6/7 > 0.)

For a cleaner version of David’s solution, we can use the convexity of x lnx to get∑
a ln as =

∑
a1−s · as ln as ≥ (

∑
a1−s)

∑
a1−s · as∑
a1−s

ln

∑
a1−s · as∑
a1−s

= 0

(where we again take s = 6/7 > 0).

Both are pretty intuitive (but certainly not obvious) solutions once one realizes direct Jensen
goes in the wrong direction. In particular, s = 1 doesn’t work since we have a+ b+ c ≤ 3 from
the power mean inequality. �

This third solution was suggested by Victor Wang.

Solution 4. From et ≥ 1 + t for t = lnx−
6
7 , we find 6

7 lnx ≥ 1− x− 6
7 . Thus

6

7

∑
a ln a ≥

∑
a− a 1

7 = 0,

as desired. �

This fourth solution was suggested by chronodecay.

Remark. Polya once dreamed a similar proof of n-variable AM-GM: x ≥ 1 + lnx for positive
x, so

∑
xi ≥ n + ln

∏
xi. This establishes AM-GM when

∏
xi = 1; the rest follows by

homogenizing.

3. Letm1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers andA1, A2, . . . , A2013

be 2013 (possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi − 1} for i = 1, 2, . . . , 2013. Prove that
there is a positive integer N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Proposed by Victor Wang.

Remark. As Solution 3 shows, the bound can in fact be tightened to
∏2013
i=1 (|Ai|+ 1).

Solution 1. We will show that the smallest integer N such that N /∈ Ai (mod mi) is less
than the bound provided.

The idea is to use pigeonhole and the “Lagrange interpolation”-esque representation of CRT
systems. Define integers ti satisfying ti ≡ 1 (mod mi) and ti ≡ 0 (mod mj) for j 6= i. If we
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find nonempty sets Bi of distinct residues mod mi with Bi −Bi (mod mi) and Ai (mod mi)
disjoint, then by pigeonhole, a positive integer solution with N ≤ m1m2···m2013

|B1|·|B2|···|B2013| must exist

(more precisely, since

b1t1 + · · ·+ b2013t2013 (mod m1m2 · · ·m2013)

is injective over B1 × B2 × · · · × B2013, some two consecutively ordered solutions must differ
by at most m1m2···m2013

|B1|·|B2|···|B2013| ).

On the other hand, since 0 /∈ Ai for every i, we know such nonempty Bi must exist (e.g. take
Bi = {0}). Now suppose |Bi| is maximal; then every x (mod mi) lies in at least one of Bi,
Bi+Ai, Bi−Ai (note that x−x = 0 is not an issue when considering (Bi∪{x})− (Bi∪{x})),
or else Bi ∪ {x} would be a larger working set. Hence mi ≤ |Bi| + |Bi + Ai| + |Bi − Ai| ≤
|Bi|(1 + 2|Ai|), so we get an upper bound of

∏2013
i=1

mi
|Bi| ≤

∏2013
i=1 (2|Ai|+ 1), as desired. �

Remark. We can often find |Bi| significantly larger than mi
2|Ai|+1 (the bounds |Bi +Ai|, |Bi−

Ai| ≤ |Bi| · |Ai| seem really weak, and Bi +Ai, Bi−Ai might not be that disjoint either). For
instance, if Ai ≡ −Ai (mod mi), then we can get (the ceiling of) mi

|Ai|+1 .

Remark. By translation and repeated application of the problem, one can prove the following
slightly more general statement: “Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime
positive integers and A1, A2, . . . , A2013 be 2013 (possibly empty) sets with Ai a proper subset
of {1, 2, . . . ,mi} for i = 1, 2, . . . , 2013. Then for every integer n, there exists an integer x in

the range (n, n+
∏2013
i=1 (2|Ai|+ 1)] such that x /∈ Ai (mod mi) for i = 1, 2, . . . , 2013. (We say

A is a proper subset of B if A is a subset of B but A 6= B.)”

Remark. Let f be a non-constant integer-valued polynomial with gcd(. . . , f(−1), f(0), f(1), . . .) =
1. Then by the previous remark, we can easily prove that there exist infinitely many positive
integers n such that the smallest prime divisor of f(n) is at least c log n, where c > 0 is any
constant. (We take mi the ith prime and Ai ≡ {n : mi | f(n)} (mod mi)—if f = a

bx
d + · · · ,

then |Ai| ≤ d for all sufficiently large i.)

Solution 2. We will mimic the proof of 2010 RMM Problem 1.

Suppose 1, 2, . . . , N (for some N ≥ 1) can be covered by the sets Ai (mod mi).

Observe that for fixed m and 1 ≤ a ≤ m, exactly 1 + bN−am c of 1, 2, . . . , N are a (mod m). In

particular, we have lower and upper bounds of N−m
m and N+m

m , respectively, so PIE yields

N ≤
∑
i

|Ai|
N +mi

mi
−
∑
i<j

|Ai| · |Aj |
N −mimj

mimj
± · · · .

It follows that

N
∏
i

(
1− |Ai|

mi

)
≤
∏
i

(1 + |Ai|) ,

so N ≤
∏
i

mi
mi−|Ai| (1 + |Ai|).

Note that mi
mi−|Ai| ≤

2|Ai|+1
|Ai|+1 iff mi ≥ 2|Ai|+ 1, so we’re done unless mi ≤ 2|Ai| for some i.

In this case, there exists (by induction) 1 ≤ N ≤
∏
j 6=i(2|Aj | + 1) such that N /∈ m−1i Aj

(mod mj) for all j 6= i. Thus miN /∈ Aj (mod mj) and we trivially have miN ≡ 0 /∈ Ai
(mod mi), so miN ≤

∏
k(2|Ak|+ 1), as desired. �

This problem and the above solutions were proposed by Victor Wang.

Solution 3. We can in fact get a bound of
∏

(|Ak|+ 1) directly.

Let t = 2013. Suppose 1, 2, . . . , N are covered by the Ak (mod mk); then

zn =
∏

1≤k≤t,a∈Ak

(
1− e

2πi
mk

(n−a)
)

4

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=42&t=346738


is a linear recurrence in e
2πi

∑t
k=1

jk
mk (where each jk ranges from 0 to |Ak|). But z0 6= 0 =

z1 = · · · = zN , so N must be strictly less than the degree
∏

(|Ak|+ 1) of the linear recurrence.
Thus 1, 2, . . . ,

∏
(|Ak|+ 1) cannot all be covered, as desired. �

This third solution was suggested by Zhi-Wei Sun.

Remark. Solution 3 doesn’t require the mk to be coprime. Note that if |A1| = · · · = |At| =
b− 1, then a base b construction shows the bound of

∏
(b− 1 + 1) = bt is “tight” (if we remove

the restriction that the mk must be coprime).

However, Solutions 2 and 3 “ignore” the additive structure of CRT solution sets encapsulated
in Solution 1’s Lagrange interpolation representation.

4. Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and
AC again at S and R, respectively. Segments BR and CS meet at L, and rays LR and LS
intersect ω at D and E, respectively. The internal angle bisector of ∠BDE meets line ER at
K. Prove that if BE = BR, then ∠ELK = 1

2∠BCD.

Proposed by Evan Chen.

Solution 1.

B C

S
R

A

D

E

L

K

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR
centered at B, and notice that ∠ECR = 1

2∠EBR, implying that it lies on the circle.

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of 4CDE. Then, K is

the incenter of 4LED, so ∠ELK = 1
2∠ELD = 1

2

(
ÊD+B̂C

2

)
= 1

2
B̂ED

2 = 1
2∠BCD. �

This problem and solution were proposed by Evan Chen.

Solution 2. Note ∠EBA = ∠ECA = ∠SCR = ∠SBR = ∠ABR, so AB bisects ∠EBR.
Then by symmetry ∠BEA = ∠BRA, so ∠BCR = ∠BCA = 180− ∠BEA = 180− ∠BRA =
∠BRC, so BE = BR = BC. Proceed as above. �

This second solution was suggested by Michael Kural.
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5. For what polynomials P (n) with integer coefficients can a positive integer be assigned to every
lattice point in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any
n× n× n grid of lattice points is divisible by P (n)?

Proposed by Andre Arslan.

Answer. All P of the form P (x) = cxk, where c is a nonzero integer and k is a nonnegative
integer.

Solution. Suppose P (x) = xkQ(x) with Q(0) 6= 0 and Q is nonconstant; then there exist
infinitely many primes p dividing some Q(n); fix one of them not dividing Q(0), and take a
sequence of pairwise coprime integers m1, n1,m2, n2, . . . with p | Q(mi), Q(ni) (we can do this
with CRT).

Let f(x, y, z) be the number written at (x, y, z). Note that P (m) divides every mn×mn×m
grid and P (n) divides every mn×mn× n grid, so by Bezout’s identity, (P (m), P (n)) divides
every mn×mn×(m,n) grid. It follows that p divides every mini×mini×1 grid. Similarly, we
find that p divides every minimjnj×1×1 grid whenever i 6= j, and finally, every 1×1×1 grid.
Since p was arbitrarily chosen from an infinite set, f must be identically zero, contradiction.

For the other direction, take a solution g to the one-dimensional case using repeated CRT
(the key relation gcd(P (m), P (n)) = P (gcd(m,n)) prevents “conflicts”): start with a positive
multiple of P (1) 6= 0 at zero, and then construct g(1), g(−1), g(2), g(−2), etc. in that order
using CRT. Now for the three-dimensional version, we can just let f(x, y, z) = g(x). �

This problem and solution were proposed by Andre Arslan.

Remark. The crux of the problem lies in the 1D case. (We use the same type of reasoning to
“project” from d dimension to d− 1 dimensions.) Note that the condition P (n) | g(i) + · · ·+
g(i+n−1) (for the 1D case) is “almost” the same as P (n) | g(i)− g(i+n), so we immediately
find gcd(P (m), P (n)) | g(i) − g(i + gcd(m,n)) by Bezout’s identity. In particular, when m,n
are coprime, we will intuitively be able to get gcd(P (m), P (n)) as large as we want unless P
is of the form cxk (we formalize this by writing P = xkQ with Q(0) 6= 0).

Conversely, if P = cxk, then gcd(P (m), P (n)) = P (gcd(m,n)) renders our derived restriction
gcd(P (m), P (n)) | g(i) − g(i + gcd(m,n)) superfluous. So it “feels easy” to find nonconstant
g with P (n) | g(i) − g(i + n) for all i, n, just by greedily constructing g(0), g(1), g(−1), . . . in
that order using CRT. Fortunately, g(i) + · · · + g(i + m − 1) − g(i) − · · · − g(i + n − 1) =
g(i+ n) + · · ·+ g(i+ n+ (m− n)− 1) for m > n, so the inductive approach still works for the
stronger condition P (n) | g(i) + · · ·+ g(i+ n− 1).

Remark. Note that polynomial constructions cannot work for P = cxd+1 in d dimen-
sions. Suppose otherwise, and take a minimal degree f(x1, . . . , xd); then f isn’t constant,
so f ′(x1, . . . , xd) = f(x1 + 1, . . . , xd + 1) − f(x1, . . . , xd) is a working polynomial of strictly
smaller degree.

6. Consider a function f : Z → Z such that for every integer n ≥ 0, there are at most 0.001n2

pairs of integers (x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible
that for some integer n ≥ 0, there are more than n integers a such that f(a) 6= a · f(1) and
|a| ≤ n?

Proposed by David Yang.

Answer. No.

Solution. Call an integer conformist if f(n) = n · f(1). Call a pair (x, y) good if f(x+ y) =
f(x)+f(y) and bad otherwise. Let h(n) denote the number of conformist integers with absolute
value at most n.
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Let ε = 0.001, S be the set of conformist integers, T = Z \ S be the set of non-conformist
integers, and Xn = [−n, n] ∩ X for sets X and positive integers n (so |Sn| = h(n)); clearly
|Tn| = 2n+ 1− h(n).

First we can easily get h(n) = 2n+ 1 (−n to n are all conformist) for n ≤ 10.

Lemma 1. Suppose a, b are positive integers such that h(a) > a and b ≤ 2h(a)−2a−1. Then
h(b) ≥ 2b(1−

√
ε)− 1.

Proof. For any integer t, we have

|Sa ∩ (t− Sa)| = |Sa|+ |t− Sa| − |Sa ∪ (t− Sa)|
≥ 2h(a)− (max (Sa ∪ (t− Sa))−min (Sa ∪ (t− Sa)) + 1)

≥ 2h(a)− (max(a, t+ a)−min(−a, t− a) + 1)

= 2h(a)− (|t|+ 2a+ 1)

≥ b− |t|.

But (x, y) is bad whenever x, y ∈ S yet x + y ∈ T , so summing over all t ∈ Tb (assuming
|Tb| ≥ 2) yields

εb2 ≥ g(b) ≥
∑
t∈Tb

|Sa ∩ (t− Sa)|

≥
∑
t∈Tb

(b− |t|) ≥
b|Tb|/2c−1∑

k=0

k +

d|Tb|/2e−1∑
k=0

k ≥ 2
1

2
(|Tb|/2)(|Tb|/2− 1),

where we use br/2c + dr/2e = r (for r ∈ Z) and the convexity of 1
2x(x − 1). We conclude

that |Tb| ≤ 2 + 2b
√
ε (which obviously remains true without the assumption |Tb| ≥ 2) and

h(b) = 2b+ 1− |Tb| ≥ 2b(1−
√
ε)− 1.

Now we prove by induction on n that h(n) ≥ 2n(1 −
√
ε) − 1 for all n ≥ 10, where the base

case is clear. If we assume the result for n− 1 (n > 10), then in view of the lemma, it suffices
to show that 2h(n− 1)− 2(n− 1)− 1 ≥ n, or equivalently, 2h(n− 1) ≥ 3n− 1. But

2h(n− 1) ≥ 4(n− 1)(1−
√
ε)− 2 ≥ 3n− 1,

so we’re done. (The second inequality is equivalent to n(1− 4
√
ε) ≥ 5− 4

√
ε; n ≥ 11 reduces

this to 6 ≥ 40
√
ε = 40

√
0.001 = 4

√
0.1, which is obvious.) �

This problem and solution were proposed by David Yang.
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Algebra

A1*
A1*

Find all triples (f, g, h) of injective functions from R to R satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (x) 6= F (y) whenever x 6= y.)

Evan Chen

A2
A2

Prove that for all positive reals a, b, c,

1

a+ 1
b + 1

+
1

b+ 1
c + 1

+
1

c+ 1
a + 1

≥ 3
3
√
abc+ 1

3√
abc

+ 1
.

David Stoner

A3
A3

Find all f : R→ R such that for all x, y ∈ R, f(x) + f(y) = f(x+ y) and f(x2013) = f(x)2013.

Calvin Deng

A4
A4

Positive reals a, b, and c obey a2+b2+c2

ab+bc+ca = ab+bc+ca+1
2 . Prove that

√
a2 + b2 + c2 ≤ 1 +

|a− b|+ |b− c|+ |c− a|
2

.

Evan Chen

A5*
A5*

Let a, b, c be positive reals satisfying a+ b+ c = 7
√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Evan Chen
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A6
A6

Let a, b, c be positive reals such that a+ b+ c = 3. Prove that

18
∑
cyc

1

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

David Stoner

A7*
A7*

Consider a function f : Z→ Z such that for every integer n ≥ 0, there are at most 0.001n2 pairs of integers
(x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible that for some integer n ≥ 0,
there are more than n integers a such that f(a) 6= a · f(1) and |a| ≤ n?

David Yang

A8*
A8*

Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that(∑
a(a2 + bc)

)(∑(
a

b
+
b

a

))
≥
(∑√

(a+ 1)(a3 + bc)
)(∑√

a(a+ 1)(a+ bc)
)
.

David Stoner

A9
A9

Let a, b, c be positive reals, and let 2013

√
3

a2013+b2013+c2013 = P . Prove that

∏
cyc

(
(2P + 1

2a+b )(2P + 1
a+2b )

(2P + 1
a+b+c )

2

)
≥
∏
cyc

(
(P + 1

4a+b+c )(P + 1
3b+3c )

(P + 1
3a+2b+c )(P + 1

3a+b+2c )

)
.

David Stoner
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Combinatorics

C1
C1

Let n ≥ 2 be a positive integer. The numbers 1, 2, . . . , n2 are consecutively placed into squares of an n× n,
so the first row contains 1, 2, . . . , n from left to right, the second row contains n+ 1, n+ 2, . . . , 2n from left
to right, and so on. The magic square value of a grid is defined to be the number of rows, columns, and

main diagonals whose elements have an average value of n
2+1
2 . Show that the magic-square value of the grid

stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of
the columns. (The operations can be used multiple times, and in any order.)

Ray Li

C2
C2

Let n be a fixed positive integer. Initially, n 1’s are written on a blackboard. Every minute, David picks two
numbers x and y written on the blackboard, erases them, and writes the number (x+y)4 on the blackboard.

Show that after n− 1 minutes, the number written on the blackboard is at least 2
4n2−4

3 .

Calvin Deng

C3*
C3*

Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote the number
of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum possible value of A?

Ray Li

C4
C4

Let n be a positive integer. The numbers {1, 2, . . . , n2} are placed in an n × n grid, each exactly once.
The grid is said to be Muirhead-able if the sum of the entries in each column is the same, but for every
1 ≤ i, k ≤ n− 1, the sum of the first k entries in column i is at least the sum of the first k entries in column
i+ 1. For which n can one construct a Muirhead-able array?

Evan Chen
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C5
C5

There is a 2012× 2012 grid with rows numbered 1, 2, . . . 2012 and columns numbered 1, 2, . . . , 2012, and we
place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has
a positive integer thickness. (in micrometers!)

(a) Show that there exist 20122 unique integers ai,j where i, j ∈ [1, 2012] such that for all x, y ∈ [1, 2012],
the sum

x∑
i=1

y∑
j=1

ai,j

is equal to the sum of the thicknesses of all the napkins that cover the grid square in row x and column
y.

(b) Show that if we use at most 500, 000 napkins, at least half of the ai,j will be 0.

Ray Li

C6
C6

A 4 × 4 grid has its 16 cells colored arbitrarily in three colors. A swap is an exchange between the colors
of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry,
regardless of the grid’s initial coloring.

Matthew Babbitt

C7*
C7*

A 22013 + 1 by 22013 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words,
for every positive integer n > 1, there do not exist pairwise distinct black squares s1, s2, . . . , sn such that
si, si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1). What is the maximum possible number of filled
black squares?

David Yang

C8
C8

There are 20 people at a party. Each person holds some number of coins. Every minute, each person who
has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that
A gives B a coin and B gives A a coin at the same time.) Suppose that this process continues indefinitely.
That is, for any positive integer n, there exists a person who will give away coins during the nth minute.
What is the smallest number of coins that could be at the party?

Ray Li

10

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=496961
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=496579
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=524078
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=521146


Combinatorics Problem Shortlist ELMO 2013

C9*
C9*

f0 is the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each i > 1, let
fi(x, y) be the remainder when

fi−1(x, y) +

1∑
j=−1

1∑
k=−1

fi−1(x+ j, y + k)

is divided by 2.

For each i ≥ 0, let ai =
∑

(x,y)∈Z2 fi(x, y). Find a closed form for an (in terms of n).

Bobby Shen

C10*
C10*

Let N ≥ 2 be a fixed positive integer. There are 2N people, numbered 1, 2, . . . , 2N , participating in a tennis
tournament. For any two positive integers i, j with 1 ≤ i < j ≤ 2N , player i has a higher skill level than
player j. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court
among N courts, numbered 1, 2, . . . , N .

During a round, each player plays against the other person assigned to his court (so that exactly one match
takes place per court), and the player with higher skill wins the match (in other words, there are no upsets).
Afterwards, for i = 2, 3, . . . , N , the winner of court i moves to court i − 1 and the loser of court i stays on
court i; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court N .

Find all positive integers M such that, regardless of the initial pairing, the players 2, 3, . . . , N + 1 all change
courts immediately after the Mth round.

Ray Li
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Geometry

G1
G1

Let ABC be a triangle with incenter I. Let U , V and W be the intersections of the angle bisectors of angles
A, B, and C with the incircle, so that V lies between B and I, and similarly with U and W . Let X, Y ,
and Z be the points of tangency of the incircle of triangle ABC with BC, AC, and AB, respectively. Let
triangle UVW be the David Yang triangle of ABC and let XY Z be the Scott Wu triangle of ABC. Prove
that the David Yang and Scott Wu triangles of a triangle are congruent if and only if ABC is equilateral.

Owen Goff

G2
G2

Let ABC be a scalene triangle with circumcircle Γ, and let D,E,F be the points where its incircle meets
BC, AC, AB respectively. Let the circumcircles of 4AEF , 4BFD, and 4CDE meet Γ a second time at
X,Y, Z respectively. Prove that the perpendiculars from A,B,C to AX,BY,CZ respectively are concurrent.

Michael Kural

G3
G3

In 4ABC, a point D lies on line BC. The circumcircle of ABD meets AC at F (other than A), and the
circumcircle of ADC meets AB at E (other than A). Prove that as D varies, the circumcircle of AEF always
passes through a fixed point other than A, and that this point lies on the median from A to BC.

Allen Liu

G4*
G4*

Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and AC again at
S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect ω at D and E,
respectively. The internal angle bisector of ∠BDE meets line ER at K. Prove that if BE = BR, then
∠ELK = 1

2∠BCD.

Evan Chen

G5
G5

Let ω1 and ω2 be two orthogonal circles, and let the center of ω1 be O. Diameter AB of ω1 is selected so
that B lies strictly inside ω2. The two circles tangent to ω2, passing through O and A, touch ω2 at F and
G. Prove that FGOB is cyclic.

Eric Chen
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G6
G6

Let ABCDEF be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define X =
AB ∩DE, Y = BC ∩ EF , and Z = CD ∩ FA. Prove that

XY

XZ
=
BE

AD

sin |∠B − ∠E|
sin |∠A− ∠D|

.

Victor Wang

G7*
G7*

Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect ω at D and E
respectively. Let O1 be the center of the circle through D tangent to AC at C, and let O2 be the center
of the circle through E tangent to AB at B. Prove that O1, O2, and the nine-point center of ABC are
collinear.

Michael Kural

G8
G8

Let ABC be a triangle, and let D, A, B, E be points on line AB, in that order, such that AC = AD and
BE = BC. Let ω1, ω2 be the circumcircles of 4ABC and 4CDE, respectively, which meet at a point
F 6= C. If the tangent to ω2 at F cuts ω1 again at G, and the foot of the altitude from G to FC is H, prove
that ∠AGH = ∠BGH.

David Stoner

G9
G9

Let ABCD be a cyclic quadrilateral inscribed in circle ω whose diagonals meet at F . Lines AB and CD
meet at E. Segment EF intersects ω at X. Lines BX and CD meet at M , and lines CX and AB meet at
N . Prove that MN and BC concur with the tangent to ω at X.

Allen Liu

G10*
G10*

Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner
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G11
G11

Let 4ABC be a nondegenerate isosceles triangle with AB = AC, and let D,E, F be the midpoints of
BC,CA,AB respectively. BE intersects the circumcircle of 4ABC again at G, and H is the midpoint of
minor arc BC. CF ∩DG = I,BI ∩AC = J . Prove that ∠BJH = ∠ADG if and only if ∠BID = ∠GBC.

David Stoner

G12*
G12*

Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

G13
G13

In 4ABC, AB < AC. D and P are the feet of the internal and external angle bisectors of ∠BAC,
respectively. M is the midpoint of segment BC, and ω is the circumcircle of 4APD. Suppose Q is on
the minor arc AD of ω such that MQ is tangent to ω. QB meets ω again at R, and the line through R
perpendicular to BC meets PQ at S. Prove SD is tangent to the circumcircle of 4QDM .

Ray Li

G14
G14

Let O be a point (in the plane) and T be an infinite set of points such that |P1P2| ≤ 2012 for every two
distinct points P1, P2 ∈ T . Let S(T ) be the set of points Q in the plane satisfying |QP | ≤ 2013 for at least
one point P ∈ T .

Now let L be the set of lines containing exactly one point of S(T ). Call a line `0 passing through O bad if
there does not exist a line ` ∈ L parallel to (or coinciding with) `0.

(a) Prove that L is nonempty.

(b) Prove that one can assign a line `(i) to each positive integer i so that for every bad line `0 passing
through O, there exists a positive integer n with `(n) = `0.

David Yang
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Number Theory

N1
N1

Find all ordered triples of non-negative integers (a, b, c) such that a2 + 2b + c, b2 + 2c + a, and c2 + 2a + b
are all perfect squares.

Note: This problem was withdrawn from the ELMO Shortlist and used on ksun48’s mock AIME.

Matthew Babbitt

N2*
N2*

For what polynomials P (n) with integer coefficients can a positive integer be assigned to every lattice point
in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any n × n × n grid of lattice
points is divisible by P (n)?

Andre Arslan

N3
N3

Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct numbers of the form
ab, where a ∈ {3, 4, 5, 6} and b is a positive integer.

Matthew Babbitt

N4
N4

Find all triples (a, b, c) of positive integers such that if n is not divisible by any integer less than 2013, then
n+ c divides an + bn + n.

Evan Chen

N5*
N5*

Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and A1, A2, . . . , A2013 be 2013
(possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi−1} for i = 1, 2, . . . , 2013. Prove that there is a positive integer
N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Victor Wang
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N6*
N6*

Find all positive integers m for which there exists a function f : Z+ → Z+ such that

ff
f(n)(n)(n) = n

for every positive integer n, and f2013(m) 6= m. Here fk(n) denotes f(f(· · · f︸ ︷︷ ︸
k f ’s

(n) · · · )).

Evan Chen

N7*
N7*

Let p be a prime satisfying p2 | 2p−1 − 1, n be a positive integer, and f(x) = (x−1)p
n
−(xp

n
−1)

p(x−1) . Find

the largest positive integer N such that there exist polynomials g, h ∈ Z[x] and an integer r satisfying
f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

N8
N8

We define the Fibonacci sequence {Fn}n≥0 by F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2; we
define the Stirling number of the second kind S(n, k) as the number of ways to partition a set of n ≥ 1
distinguishable elements into k ≥ 1 indistinguishable nonempty subsets.

For every positive integer n, let tn =
∑n
k=1 S(n, k)Fk. Let p ≥ 7 be a prime. Prove that

tn+p2p−1 ≡ tn (mod p)

for all n ≥ 1.

Victor Wang

16
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A1*
Find all triples (f, g, h) of injective functions from R to R satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (x) 6= F (y) whenever x 6= y.)

Evan Chen

Answer. For all real numbers x, f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0, we can get that
f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y− f(y)− (b+ 2c) is constant, so that y− f(y) is constant. Thus, f is
linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get 2a = b+ c, 2b = c+a
and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x + C, where C is an arbitrary real. One can easily
verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. This is not a very hard problem. The basic idea is to view f(0), g(0) and h(0) as constants, and
write the first equation entirely in terms of f(x), much like we would attempt to eliminate variables in a
standard system of equations. At this point we still had two degrees of freedom, x and y, so it seems likely
that the result would be easy to solve. Indeed, we simply select x in such a way that two of the terms cancel,
and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives g(f(a)) + h(b) =
g(f(b)) + h(a) =⇒ g(f(a)) − h(a) = g(f(b)) − h(b). So g(f(x)) = h(x) + a1 for a constant a1. Similarly,
h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.

Now, we will show that h(h(x)) − f(x) and h(h(x)) − g(x) are both constant. For the second, just plug in
x = 0 to the third equation. For the first, let x = a3, y = k in the original to get g(f(h(k))) = h(a3) + f(k).
But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is constant as desired.

Now f(x)− g(x) is constant, and by symmetry g(x)−h(x) is also constant. Now let g(x) = f(x) + p, h(x) =
f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q
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Now plugging in (x, y) and (y, x) into the first one gives f(x+ f(y)) = f(y+ f(x)) =⇒ f(x)−x = f(y)− y
from injectivity, f(x) = x + c. Plugging this in gives 2p = q, 2q = p, p + q = 0 so p = q = 0 and
f(x) = x+ c, g(x) = x+ c, h(x) = x+ c for a constant c are the only solutions. �

This second solution was suggested by David Stoner.
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A2
Prove that for all positive reals a, b, c,

1

a+ 1
b + 1

+
1

b+ 1
c + 1

+
1

c+ 1
a + 1

≥ 3
3
√
abc+ 1

3√
abc

+ 1
.

David Stoner

Solution. Let a = N x
y , b = N y

z and c = N z
x . Then

∑
cyc

1

a+ 1
b + 1

=
∑
cyc

y

Nx+ 1
N z + y

=
∑
cyc

y2

Nxy + 1
N yz + y2

≥ (x+ y + z)2

(xy + yz + zx)
(
N + 1

N

)
+ x2 + y2 + z2

=
(x+ y + z)2

(xy + yz + zx)
(
N + 1

N − 2
)

+ (x+ y + z)2

=
3

3 + 3(xy+yz+zx)
(x+y+z)2

(
N + 1

N − 2
)

≥ 3

3 +N + 1
N − 2

=
3

N + 1
N + 1

=
3

3
√
abc+ 1

3√
abc

+ 1
.

�

This problem and solution were proposed by David Stoner.
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A3
Find all f : R→ R such that for all x, y ∈ R, f(x) + f(y) = f(x+ y) and f(x2013) = f(x)2013.

Calvin Deng

Answer. f(x) = x, f(x) = −x, and f(x) ≡ 0.

Solution. WLOG f(1) ≥ 0 (since 2013 is odd); then f(1) = f(1)2013 =⇒ f(1) ∈ {0, 1}.
Hence for any reals x, y,

2013∑
k=0

(
2013

k

)
n2013−kf(x)kf(y)2013−k = [f(x) + nf(y)]2013

= f(x+ ny)2013

= f((x+ ny)2013)

=

2013∑
k=0

(
2013

k

)
n2013−kf(xky2013−k)

for all positive integers n, so viewing this as a polynomial identity in n we get f(x)kf(y)2013−k = f(xky2013−k)
for k = 0, 1, . . . , 2013.

If f(1) = 1, then k = 2 gives f(x2) = f(x)2 ≥ 0 which is enough to get f(x) = x for all x. Otherwise, if
f(1) = 0, then k = 1 gives f(x) = 0 for all x. �

This problem and solution were proposed by Calvin Deng.
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A4

Positive reals a, b, and c obey a2+b2+c2

ab+bc+ca = ab+bc+ca+1
2 . Prove that

√
a2 + b2 + c2 ≤ 1 +

|a− b|+ |b− c|+ |c− a|
2

.

Evan Chen

Solution 1. The given condition rearranges as 2(a2+b2+c2)−(ab+bc+ca) = (ab+bc+ca)2. Homogenizing,
this becomes:

|a− b|+ |b− c|+ |c− a|+ 2(ab+ bc+ ca)√
2(a2 + b2 + c2)− (ab+ bc+ ca)

≥ 2
√
a2 + b2 + c2.

An application of Holder’s inequality gives:

LHS2 ≥
(
(a− b)2 + (b− c)2 + (c− a)2 + 2(ab+ bc+ ca)

)3(∑
cyc(a− b)4 + 2(ab+ bc+ ca) (2(a2 + b2 + c2)− (ab+ bc+ ca))

)1
=

(2a2 + 2b2 + 2c2)3

2a4 + 2b4 + 2c4 + 4a2b2 + 4a2c2 + 4c2a2

=
8(a2 + b2 + c2)3

2(a2 + b2 + c2)2

= 4(a2 + b2 + c2)

Upon taking square roots of both sides we are done. �

This problem and solution were proposed by Evan Chen.

Solution 2. Let x = ab+ bc+ ca, so 1 ≤ a2+b2+c2

x = x+1
2 implies x ≥ 1. If α = a− b, β = b− c, γ = c− a,

WLOG with α, β ≥ 0 (or equivalently a ≥ b ≥ c), then because α+ β + γ = 0, we have

2(α2 + αβ + β2) = α2 + β2 + γ2 = 2x
x+ 1

2
− 2x = x(x− 1),

and we want to minimize |α|+ |β|+ |γ| = 2(α+ β). But (α+ β)2 ≥ α2 +αβ + β2 implies α+ β ≥
√

x(x−1)
2 ,

with equality attained for some choice of (a, b, c) precisely when αβ = 0 and (α + β)β ≤ x (since c ≥ 0).

In particular, β = 0 works for any fixed x ≥ 1, so the problem is equivalent to
√

x(x+1)
2 ≤ 1 +

√
x(x−1)

2 for

x ≥ 1, which is easy after squaring both sides. �

This second solution was suggested by Victor Wang.
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A5*
Let a, b, c be positive reals satisfying a+ b+ c = 7

√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Evan Chen

Solution 1. By weighted AM-GM we have that

1 =
∑
cyc

(
7
√
a

a+ b+ c

)
=
∑
cyc

(
a

a+ b+ c
· 1

7
√
a6

)

≥
(

1

aabbcc

) 6/7
a+b+c

.

Rearranging yields aabbcc ≥ 1. �

This problem and solution were proposed by Evan Chen.

Remark. The problem generalizes easily to n variables, and exponents other than 1
7 . Specifically, if positive

reals x1 + · · ·+xn = xr1 + · · ·+xrn for some real number r 6= 1, then
∏
i≥1 x

xi
i ≥ 1 if and only if r < 1. When

r ≤ 0, a Jensen solution is possible using only the inequality a+ b+ c ≥ 3.

Solution 2. First we claim that a, b, c < 5. Assume the contrary, that a ≥ 5. Let f(x) = x − 7
√
x. Since

f ′(x) > 0 for x ≥ 5, we know that f(a) ≥ 5− 7
√

5 > 3. But this means that WLOG b− 7
√
b < −1.5, which is

clearly false since b− 7
√
b ≥ 0 for b ≥ 1, and b− 7

√
b ≥ − 7

√
b ≥ −1 for 0 < b < 1. So indeed a, b, c < 5.

Now rewrite the inequality as

∑
a ln a ≥ 0⇔

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥ 0.

Now note that if g(x) = x
6
7 lnx, then g′′(x) = 35−6 ln x

49x
8
7

> 0 for x ∈ (0, 5). Therefore g is convex and we can

use Jensen’s Inequality to get

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

) 6
7

ln

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

)
.

Since
∑
a =

∑
a

1
7 , it suffices to show that

∑
a

8
7 ≥

∑
a. But by weighted AM-GM we have

6a
8
7 + a

1
7 ≥ 7a =⇒ a

8
7 − a ≥ 1

6
(a− 7

√
a).

Adding up the analogous inequalities for b, c gives the desired result. �

This second solution was suggested by David Stoner.

Solution 3. Here we unify the two solutions above.

It’s well-known that weighted AM-GM follows from (and in fact, is equivalent to) the convexity of ex (or
equivalently, the concavity of lnx), as

∑
wie

xi ≥ e
∑
wixi for reals xi and nonnegative weights wi summing

to 1. However, it also follows from the convexity of y ln y (or equivalently, the concavity of yey) for y > 0.
Indeed, letting yi = exi > 0, and taking logs, weighted AM-GM becomes

∑
wiyi ·

1

yi
log

1

yi
≥ (
∑

wiyi)

∑
wiyi · 1

yi∑
wiyi

log

∑
wiyi · 1

yi∑
wiyi

,
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which is clear.

To find Evan’s solution, we can use the concavity of lnx to get
∑
a ln a−s ≤ (

∑
a) ln

∑
a·a−s∑

a = 0. (Here we

take s = 6/7 > 0.)

For a cleaner version of David’s solution, we can use the convexity of x lnx to get∑
a ln as =

∑
a1−s · as ln as ≥ (

∑
a1−s)

∑
a1−s · as∑
a1−s

ln

∑
a1−s · as∑
a1−s

= 0

(where we again take s = 6/7 > 0).

Both are pretty intuitive (but certainly not obvious) solutions once one realizes direct Jensen goes in the
wrong direction. In particular, s = 1 doesn’t work since we have a+b+c ≤ 3 from the power mean inequality.
�

This third solution was suggested by Victor Wang.

Solution 4. From et ≥ 1 + t for t = lnx−
6
7 , we find 6

7 lnx ≥ 1− x− 6
7 . Thus

6

7

∑
a ln a ≥

∑
a− a 1

7 = 0,

as desired. �

This fourth solution was suggested by chronodecay.

Remark. Polya once dreamed a similar proof of n-variable AM-GM: x ≥ 1 + lnx for positive x, so
∑
xi ≥

n+ ln
∏
xi. This establishes AM-GM when

∏
xi = 1; the rest follows by homogenizing.
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A6
Let a, b, c be positive reals such that a+ b+ c = 3. Prove that

18
∑
cyc

1

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

David Stoner

Solution. Since 0 ≤ a, b, c ≤ 3 we have

1

(3− c)(4− c)
≥ 2c2 + c+ 3

36
⇐⇒ c(c− 1)2(2c− 9) ≤ 0.

Then

2(ab+ bc+ ca) + 18
∑
cyc

(
2c2 + c+ 3

36

)
= (a+ b+ c)2 +

a+ b+ c+ 9

2
= 15.

�

This problem was proposed by David Stoner. This solution was given by Evan Chen.
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A7*
Consider a function f : Z→ Z such that for every integer n ≥ 0, there are at most 0.001n2 pairs of integers
(x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible that for some integer n ≥ 0,
there are more than n integers a such that f(a) 6= a · f(1) and |a| ≤ n?

David Yang

Answer. No.

Solution. Call an integer conformist if f(n) = n · f(1). Call a pair (x, y) good if f(x+ y) = f(x) + f(y) and
bad otherwise. Let h(n) denote the number of conformist integers with absolute value at most n.

Let ε = 0.001, S be the set of conformist integers, T = Z \ S be the set of non-conformist integers, and
Xn = [−n, n] ∩X for sets X and positive integers n (so |Sn| = h(n)); clearly |Tn| = 2n+ 1− h(n).

First we can easily get h(n) = 2n+ 1 (−n to n are all conformist) for n ≤ 10.

Lemma 1. Suppose a, b are positive integers such that h(a) > a and b ≤ 2h(a) − 2a − 1. Then h(b) ≥
2b(1−

√
ε)− 1.

Proof. For any integer t, we have

|Sa ∩ (t− Sa)| = |Sa|+ |t− Sa| − |Sa ∪ (t− Sa)|
≥ 2h(a)− (max (Sa ∪ (t− Sa))−min (Sa ∪ (t− Sa)) + 1)

≥ 2h(a)− (max(a, t+ a)−min(−a, t− a) + 1)

= 2h(a)− (|t|+ 2a+ 1)

≥ b− |t|.

But (x, y) is bad whenever x, y ∈ S yet x+ y ∈ T , so summing over all t ∈ Tb (assuming |Tb| ≥ 2) yields

εb2 ≥ g(b) ≥
∑
t∈Tb

|Sa ∩ (t− Sa)|

≥
∑
t∈Tb

(b− |t|) ≥
b|Tb|/2c−1∑

k=0

k +

d|Tb|/2e−1∑
k=0

k ≥ 2
1

2
(|Tb|/2)(|Tb|/2− 1),

where we use br/2c+dr/2e = r (for r ∈ Z) and the convexity of 1
2x(x−1). We conclude that |Tb| ≤ 2+2b

√
ε

(which obviously remains true without the assumption |Tb| ≥ 2) and h(b) = 2b+1−|Tb| ≥ 2b(1−
√
ε)−1.

Now we prove by induction on n that h(n) ≥ 2n(1 −
√
ε) − 1 for all n ≥ 10, where the base case is

clear. If we assume the result for n − 1 (n > 10), then in view of the lemma, it suffices to show that
2h(n− 1)− 2(n− 1)− 1 ≥ n, or equivalently, 2h(n− 1) ≥ 3n− 1. But

2h(n− 1) ≥ 4(n− 1)(1−
√
ε)− 2 ≥ 3n− 1,

so we’re done. (The second inequality is equivalent to n(1 − 4
√
ε) ≥ 5 − 4

√
ε; n ≥ 11 reduces this to

6 ≥ 40
√
ε = 40

√
0.001 = 4

√
0.1, which is obvious.) �

This problem and solution were proposed by David Yang.
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A8*
Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that(∑

a(a2 + bc)
)(∑(

a

b
+
b

a

))
≥
(∑√

(a+ 1)(a3 + bc)
)(∑√

a(a+ 1)(a+ bc)
)
.

David Stoner

Solution.

Lemma 1. Let x, y, z be positive reals, not all strictly on the same side of 1. Then
∑

x
y + y

x ≥
∑
x+ 1

x .

Proof. WLOG (x− 1)(y − 1) ≤ 0; then

(x+ y + z − 1)(x−1 + y−1 + z−1 − 1) ≥ (xy + z)(x−1y−1 + z) ≥ 4

by Cauchy.

Alternatively, if x, y ≥ 1 ≥ z, one may smooth z up to 1 (e.g. by differentiating with respect to z and
observing that x−1 + y−1 − 1 ≤ x+ y − 1) to reduce the inequality to x

y + y
x ≥ 2.

Let si = ai + bi + ci and p = abc. The key is to Cauchy out s3’s from the RHS and use the lemma (in the
form s1s−1 − 3 ≥ s1 + s−1) on the LHS to reduce the problem to

(s1 + s−1)2(s3 + 3p)2 ≥ (3 + s1)(3 + s−1)(s3 + ps−1)(s3 + ps1).

By AM-GM on the RHS, it suffices to prove

s1+s−1

2 + s1+s−1

2
s1+s−1

2 + 3
≥
s3 + p s1+s−1

2

s3 + 3p
,

or equivalently, since s1+s−1

2 ≥ 3, that s3
p ≥

s1+s−1

2 . By the lemma, this boils down to 2
∑

cyc a
3 ≥∑

textcyc a(b2 + c2), which is obvious. �

This problem and solution were proposed by David Stoner.

Remark. The condition a2013 + b2013 + c2013 + abc = 4 can be replaced with anything that guarantees a, b, c
are not all on the same side of 1. One can also propose the following more direct application of the lemma
instead: “Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that

∑((a
b

)2012
+

(
b

a

)2012
)
≥
∑(

a2011 +
1

a2011

)
.

” This is perhaps more motivated, but also significantly easier. Note that if one replaces the exponents in the
inequality with something like 2013 and 2012, then one may use the PQR method to reduce the problem to the
case when two of a, b, c are equal. Alternatively, if one changes the condition to a2013b+b2013c+c2013a+abc =
4, then it’s perfectly fine for the first exponent to be at least 2013 and the second to be at most 2013; however,
this makes the lemma much more transparent.
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A9

Let a, b, c be positive reals, and let 2013

√
3

a2013+b2013+c2013 = P . Prove that

∏
cyc

(
(2P + 1

2a+b )(2P + 1
a+2b )

(2P + 1
a+b+c )

2

)
≥
∏
cyc

(
(P + 1

4a+b+c )(P + 1
3b+3c )

(P + 1
3a+2b+c )(P + 1

3a+b+2c )

)
.

David Stoner

Solution. WLOG P = 1; we prove that any positive a, b, c (even those without
∑
a2013 = 3) satisfy the

inequality. The key is that f(x) = log(1 + x−1) = log(1 + x)− log(x) is convex, since f ′′(x) = −(1 + x)−2 +
x−2 > 0 for all x.

By Jensen’s inequality, we have

1

2
f(2(2a+ b)) +

1

2
f(2(2a+ c)) ≥ f(4a+ b+ c)

1

2
f(2(2b+ c)) +

1

2
f(2(2c+ b)) ≥ f(3b+ 3c)

−2f(2(a+ b+ c)) ≥ −f(3a+ 2b+ c)− f(3c+ 2b+ a).

Exponentiating and multiplying everything once (cyclically), we get the desired inequality. �

This problem and solution were proposed by David Stoner.
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C1
Let n ≥ 2 be a positive integer. The numbers 1, 2, . . . , n2 are consecutively placed into squares of an n× n,
so the first row contains 1, 2, . . . , n from left to right, the second row contains n+ 1, n+ 2, . . . , 2n from left
to right, and so on. The magic square value of a grid is defined to be the number of rows, columns, and

main diagonals whose elements have an average value of n
2+1
2 . Show that the magic-square value of the grid

stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of
the columns. (The operations can be used multiple times, and in any order.)

Ray Li

Solution 1. The set of row sums and column sums is clearly preserved under operations (1) and (2), so we
just have to consider the main diagonals. In configuration A, let aij denote the number in the ith row and
jth column; then whenever i 6= j and k 6= l, we have aij + akl = ail + akj . But this property is invariant as
well, so the main diagonal sums remain constant under the operations, and we’re done. �

This problem and solution were proposed by Ray Li.

Solution 2. We present a proof without words for the case n = 4, which easily generalizes to other values of
n. 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 =


0 0 0 0
4 4 4 4
8 8 8 8
12 12 12 12

+


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


�

This second solution was suggested by Evan Chen.
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C2
Let n be a fixed positive integer. Initially, n 1’s are written on a blackboard. Every minute, David picks two
numbers x and y written on the blackboard, erases them, and writes the number (x+y)4 on the blackboard.

Show that after n− 1 minutes, the number written on the blackboard is at least 2
4n2−4

3 .

Calvin Deng

Solution. We proceed by strong induction on n. For n = 1 this is obvious; now assuming the result up to
n − 1 for some n > 1, consider the two numbers on the blackboard after n − 2 minutes. They must have
been created “independently,” where the first took a− 1 minutes and the second took b− 1 minutes for two
positive integers a, b (a+ b = n). But 2x is convex, so

2
4a2−4

3 + 2
4b2−4

3 ≥ 2 · 2
2(a2+b2)−4

3 ≥ 2 · 2
(a+b)2−4

3 = 2
(a+b)2−1

3 = 2
n2−1

3 ,

completing the induction. �

This problem and solution were proposed by Calvin Deng.
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C3*
Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote the number
of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum possible value of A?

Ray Li

Answer. A ≥ 28.

Solution 1. Call a 3-set good iff it has average at least m, and let S be the family of good sets.

The equality case A = 28 can be achieved when a1 = · · · = a8 = 0 and a9 = 1. Here m = 1
9 , and the good

sets are precisely those containing a9. This gives a total of
(
8
2

)
= 28.

To prove the lower bound, suppose we have exactly N good 3-sets, and let p = N

(9
3)

denote the probability

that a randomly chosen 3-set is good. Now, consider a random permutation π of {1, 2, . . . , 9}. Then the

corresponding partition
⋃2
i=0{π(3i+ 1), π(3i+ 2), π(3i+ 3)} has at least 1 good 3-set, so by the linearity of

expectation,

1 ≤ E

[
2∑
i=0

[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]

]

=

2∑
i=0

[E[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]]

=

2∑
i=0

1 · p = 3p.

Hence N = p
(
9
3

)
≥ 1

3

(
9
3

)
= 28, establishing the lower bound. �

This problem and solution were proposed by Ray Li.

Remark. One can use double-counting rather than expectation to prove N ≥ 28. In any case, this method
generalizes effortlessly to larger numbers.

Solution 2. Proceed as above to get an upper bound of 28.

On the other hand, we will show that we can partition the
(
9
3

)
= 84 3-sets into 28 groups of 3, such that in

any group, the elements a1, a2, · · · , a9 all appear. This will imply the conclusion, since if A < 28, then there
are at least 57 sets with average at most m, but by pigeonhole three of them must be in such a group, which
is clearly impossible.

Consider a 3-set and the following array:
a1 a2 a3
a4 a5 a6
a7 a8 a9

Consider a set |S| = 3. We obtain the other two 3-sets in the group as follows:

• If S contains one element in each column, then shift the elements down cyclically mod 3.

• If S contains one element in each row, then shift the elements right cyclically mod 3. Note that the
result coincides with the previous case if both conditions are satisfied.

• Otherwise, the elements of S are “constrained” in a 2×2 box, possibly shifted diagonally. In this case,
we get an L-tromino. Then shift diagonally in the direction the L-tromino points in.

One can verify that this algorithm creates such a partition, so we conclude that A ≥ 28. �

This second solution was suggested by Lewis Chen.
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C4
Let n be a positive integer. The numbers {1, 2, . . . , n2} are placed in an n × n grid, each exactly once.
The grid is said to be Muirhead-able if the sum of the entries in each column is the same, but for every
1 ≤ i, k ≤ n− 1, the sum of the first k entries in column i is at least the sum of the first k entries in column
i+ 1. For which n can one construct a Muirhead-able array?

Evan Chen

Answer. All n 6= 3.

Solution. It’s easy to prove n = 3 doesn’t work since the top row must be 9,8,7 (each column sums to 15)
and the first column is either 9,5,1 or 9,4,2.

A construction for even n is not hard to realize:

n2 n2 − 1 · · · n2 − n+ 1
n2 − n n2 − n− 1 · · · n2 − 2n+ 1

...
...

. . .
...

n2 − (n2 − 1)n n2 − (n2 − 1)n · · · n2 − (n2 )n+ 1
n2 − (n2 + 1)n+ 1 n2 − (n2 + 1)n+ 2 · · · n2 − (n2 )n

...
...

. . .
...

n+ 1 n+ 2 · · · 2n
1 2 · · · n

And we can just alter the even construction a bit for n ≥ 5 odd; I’ll just write it out for n = 7 since it
generalizes easily: we modify

7



6 6 6 6 6 6 6
5 5 5 5 5 5 5
4 4 4 4 4 4 4
3 3 3 3 3 3 3
2 2 2 2 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0


+



7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
4 4 4 4 4 4 4
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7


to get

7



6 6 6 6 6 6 6
5 5 5 5 5 5 5
4 4 4 4 4 4 4
3 3 3 3 3 3 3
2 2 2 2 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0


+



7 6 5 4 3 2 1
7 6 5 4 3 2 1
5 6 7 1 2 3 4
6 4 2 7 5 3 1
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7


.

If we verify the majorization condition for the original one (without regard to distinctness) then we only
have to check it in the new one for k = 3 = n−1

2 and i = 1, 2, 4, 5, 6 (in particular, we can skip i = 3 = n−1
2 ).

�

This problem and solution were proposed by Evan Chen.
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C5
There is a 2012× 2012 grid with rows numbered 1, 2, . . . 2012 and columns numbered 1, 2, . . . , 2012, and we
place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has
a positive integer thickness. (in micrometers!)

(a) Show that there exist 20122 unique integers ai,j where i, j ∈ [1, 2012] such that for all x, y ∈ [1, 2012],
the sum

x∑
i=1

y∑
j=1

ai,j

is equal to the sum of the thicknesses of all the napkins that cover the grid square in row x and column
y.

(b) Show that if we use at most 500, 000 napkins, at least half of the ai,j will be 0.

Ray Li

Solution 1. (a) Let ti,j be the total thickness at square (i, j) (row i, column j). For convenience, set ti,j = 0
outside the boundary (i.e. if one of i, j is less than 1 or greater than 2012). By induction on i+ j ≥ 2 (over
i, j ∈ [2012]), it’s easy to see that the ai,j are uniquely defined as ti,j + ti−1,j−1 − ti−1,j − ti,j−1 (and that
this solution also works).

(b) One can easily check that ai,j = 0 if no napkin corners lie at intersection of the ith vertical grid line (from
the top) and the jth horizontal grid line (from the left). Indeed, if we color squares (i− 1, j − 1) and (i, j)
red, (i − 1, j) and (i, j − 1) blue, then if there are no such napkin corners, every napkin must hit an equal
number of red and blue squares and thus contribute zero to the sum ti,j + ti−1,j−1 − ti−1,j − ti,j−1. On the
other hand, there are at most 4 · 500000 corners, and 20122 > 4000000 = 2(4 · 500000) pairs (i, j) ∈ [2012]2,
so we’re done. �

Solution 2. Throughout this proof, rows go from bottom to top, and columns go from left to right.

Suppose we add a napkin with thickness x.

This affects the a-value only at the four corner points of the napkin. Corners are defined to be the bolded
points in the following diagram. If the napkin shares an edge with the top boundary or the right boundary,
some corners may not be considered for a-value valuation, which is even better for part (b). [Alternatively,
for purists out there, define a-values for i, j = 2013.]

0 0 0 0 0
−1 0 0 1 0

0 0 0 0 0

1 0 0 −1 0

Boxes represent squares covered by napkins.

Specifically, the a-values of the bottom-left and top-right corners increment by x, and the bottom-right and
top-left corners decrement by x. (Easy verification with diagram. This should be somewhat intuitive as well:
think PIE.)

Notably, the process of adding a napkin is additive and reversible. Hence no matter how many napkins are
placed on the table, we can just add a-values together.

So a-values exist, and can be consistently labeled. Furthermore, each napkin modifies at most 4 a-values, so
with 500,000 napkins at most 2 million a-values are modified, which is less than half of 20122. �

This problem and its solutions were proposed by Ray Li.
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C6
A 4 × 4 grid has its 16 cells colored arbitrarily in three colors. A swap is an exchange between the colors
of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry,
regardless of the grid’s initial coloring.

Matthew Babbitt

Answer. No.

Solution. We provide the following counterexample, in the colors red, white, and green:

W W G W
R W W R
R R R G
R W W G

Suppose for contradiction that we can get a line of symmetry in 3 or less swaps. Clearly the symmetry must
be over a diagonal.

If it is upper left to lower right, then there are 6 pairs of squares that reflect to each other over this diagonal
and 4 squares on the diagonal. None of the 6 pairs are matched, so at least one square in each must be
part of a swap. Also, there must be an even number of red squares on the diagonal, so one of the diagonal
squares must be swapped, for a total of 7 > 3 · 2. This requires more than 3 swaps. The other diagonal
works similarly. �

This problem was proposed by Matthew Babbitt. This solution was given by Bobby Shen.

Remark. To construct counterexamples, we first put an odd number of one color (so symmetry must be
over a diagonal), make no existing matches over the diagonal, and require that one or more of the diagonal
squares be part of a swap.
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C7*
A 22013 + 1 by 22013 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words,
for every positive integer n > 1, there do not exist pairwise distinct black squares s1, s2, . . . , sn such that
si, si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1). What is the maximum possible number of filled
black squares?

David Yang

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n+ 1)− 1. In this particular instance,

m = 2013 and n = 22013 + 1.

Solution. Let n = 2m + 1. Double-counting square edges yields 3v + 1 ≤ 4v − e ≤ 2n(n + 1), so because
n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved iff (a) the graph formed
by black squares is a connected forest (i.e. a tree) and (b) all but two square edges belong to at least one
black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an “H-shape” (so
if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is black); call this G1. To go
from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in Gm, and fill in (x, y) with x, y not both even
iff x + y is odd (so iff one of x, y is odd and the other is even). Each “newly-created” white square has
both coordinates odd, and thus borders 4 (newly-created) black squares. In particular, there are no new
white squares on the border (we only have the original two from G1). Furthermore, no two white squares
share an edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b). To
check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff (x1, y1) and
(x2, y2) are black squares (and thus connected) in Gm (the new black squares are essentially just “bridges”).
Indeed, every path in Gm+1 alternates between coordinates with odd and even sum, or equivalently, new
and old black squares. But two black squares (x1, y1) and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2)
is black and adjacent to (2x1, 2y1) and (2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is
clear: the set of old black squares must remain connected in Gm+1, and all new black squares (including
those on the boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a cycle in Gm by
removing the new black squares from a cycle in Gm+1 (as every other square in a cycle would have to have
odd coordinate sum). �

This problem and solution were proposed by David Yang.
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C8
There are 20 people at a party. Each person holds some number of coins. Every minute, each person who
has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that
A gives B a coin and B gives A a coin at the same time.) Suppose that this process continues indefinitely.
That is, for any positive integer n, there exists a person who will give away coins during the nth minute.
What is the smallest number of coins that could be at the party?

Ray Li

Solution 1. Call a person giving his 19 coins away a charity. For any finite, fixed number of coins there are
finitely many states, which implies that the states must cycle infinitely. Hence by doing individual charities
one by one, there is a way to make it cycle infinitely (just take the charities that would normally happen at
the same time and do them one by one all together before moving on). So this means we can reverse the
charities and have it go on infinitely the other way, so call an inverse charity a theft. But after k ≤ 20 thefts,
the number of coins among the people who have stolen at least once is at least 19 + 18 + · · ·+ (20− k) since
the kth thief steals at most k − 1 coins from people who were already thieves but gains 19. So then we’re
done since for k = 20 this is 190. Of course, one construction is just when person j has j − 1 coins. �

This first solution was suggested by Mark Sellke.

Solution 2. Like above, do the charities in arbitrary order among the ones that are “together.” Assume
there are at most 189 coins. Then the sum of squares of coins each guy has decreases each time, since if one
guy loses 19 coins then the sums of squares decreases by at least 361, while giving 1 coin to everyone else
increases it by 19+2(number of coins they had before), and the number of coins they had before is less than
171 since the giving guy had 19 already, and so the sum of squares decreases since 361 > 19 + 2 · 170. �

This second solution was suggested by Mark Sellke.

Remark. Compare with this problem in 102 Combinatorial Problems (paraphrased, St. Petersburg 1988):
“119 residents live in a place with 120 apartments. Every day, in each apartment with at least 15 people, all
the people move out into pairwise distinct apartments. Must this process terminate?”

This problem was proposed by Ray Li.
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C9*
f0 is the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each i > 1, let
fi(x, y) be the remainder when

fi−1(x, y) +

1∑
j=−1

1∑
k=−1

fi−1(x+ j, y + k)

is divided by 2.

For each i ≥ 0, let ai =
∑

(x,y)∈Z2 fi(x, y). Find a closed form for an (in terms of n).

Bobby Shen

Solution. ai is simply the number of odd coefficients of Ai(x, y) = A(x, y)i, where A(x, y) = (x2+x+1)(y2+
y+ 1)−xy. Throughout this proof, we work in F2 and repeatedly make use of the Frobenius endomorphism

in the form A2km(x, y) = Am(x, y)2
k

= Am(x2
k

, y2
k

) (*). We advise the reader to try the following simpler
problem before proceeding: “Find (a recursion for) the number of odd coefficients of (x2 + x+ 1)2

n−1.”

First suppose n is not of the form 2m − 1, and has i ≥ 0 ones before its first zero from the right. By direct
exponent analysis (after using (*)), we obtain an = an−(2i−1)

2

a2i−1. Applying this fact repeatedly, we find

that an = a2`1−1 · · · a2`r−1, where `1, `2, . . . , `r are the lengths of the r consecutive strings of ones in the
binary representation of n. (When n = 2m − 1, this is trivially true. When n = 0, we take r = 0 and a0 to
be the empty product 1, by convention.)

We now restrict our attention to the case n = 2m−1. The key is to look at the exponents of x and y modulo
2—in particular, A2n(x, y) = An(x2, y2) has only “(0, 0) (mod 2)” terms for i ≥ 1. This will allow us to find
a recursion.

For convenience, let U [B(x, y)] be the number of odd coefficients of B(x, y), so U [A2n−1(x, y)] = a2n−1.
Observe that

A(x, y) = (x2 + x+ 1)(y2 + y + 1)− xy = (x2 + 1)(y2 + 1) + (x2 + 1)y + x(y2 + 1)

(x+ 1)A(x, y) = (y2 + 1) + (x2 + 1)y + x3(y2 + 1) + (x3 + x)y

(x+ 1)(y + 1)A(x, y) = (x2y2 + 1) + (x2y + y3) + (x3 + xy2) + (x3y3 + xy)

(x+ y)A(x, y) = (x2 + y2) + (x2 + 1)(y3 + y) + (x3 + x)(y2 + 1) + (x3y + xy3).

Hence for n ≥ 1, we have (using (*) again)

U [A2n−1(x, y)] = U [A(x, y)A2n−1−1(x2, y2)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + U [(y + 1)A2n−1−1(x, y)] + U [(x+ 1)A2n−1−1(x, y)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + 2U [(x+ 1)A2n−1−1(x, y)].

Similarly, we get

U [(x+ 1)A2n−1] = 2U [(y + 1)A2n−1−1] + 2U [(x+ 1)A2n−1−1] = 4U [(x+ 1)A2n−1−1]

U [(x+ 1)(y + 1)A2n−1] = 2U [(xy + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1] = 4U [(x+ y)A2n−1−1]

U [(x+ y)A2n−1] = 2U [(x+ 1)(y + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1].

Here we use the symmetry between x and y, and the identity (xy+ 1) = y(x+ y−1).) It immediately follows
that

U [(x+ 1)(y + 1)A2n+1−1] = 4U [(x+ y)A2n−1]

= 8U [(x+ 1)(y + 1)A2n−1−1] + 8
U [(x+ 1)(y + 1)A2n−1]

4
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for all n ≥ 1, and because x− 4 | (x+ 2)(x− 4) = x2 − 2x− 8,

U [A2n+2−1(x, y)] = 2U [A2n+1−1(x, y)] + 8U [A2n−1(x, y)]

as well. But U [A20−1] = 1, U [A21−1] = 8, and

U [A22−1] = 4U [x+ y] + 8U [x+ 1] = 24,

so the recurrence also holds for n = 0. Solving, we obtain a2n−1 = 5·4n−2(−2)n
3 , so we’re done. �

This problem and solution were proposed by Bobby Shen.

Remark. The number of odd coefficients of (x2 +x+ 1)n is the Jacobsthal sequence (OEIS A001045) (up to
translation). The sequence {an} in the problem also has a (rather empty) OEIS entry. It may be interesting
to investigate the generalization

1∑
j=−1

1∑
k=−1

cj,kfi−1(x+ j, y + k)

for 9-tuples (cj,k) ∈ {0, 1}9. Note that when all cj,k are equal to 1, we get (x2 + x + 1)n(y2 + y + 1)n, and
thus the square of the Jacobsthal sequence.

Even more generally, one may ask the following: “Let f be an integer-coefficient polynomial in n ≥ 1
variables, and p be a prime. For i ≥ 0, let ai denote the number of nonzero coefficients of fp

i−1 (in Fp).
Under what conditions must there always exist an infinite arithmetic progression AP of positive integers for
which {ai : i ∈ AP} satisfies a linear recurrence?”
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C10* Combinatorics – Solutions ELMO 2013

C10*
Let N ≥ 2 be a fixed positive integer. There are 2N people, numbered 1, 2, . . . , 2N , participating in a tennis
tournament. For any two positive integers i, j with 1 ≤ i < j ≤ 2N , player i has a higher skill level than
player j. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court
among N courts, numbered 1, 2, . . . , N .

During a round, each player plays against the other person assigned to his court (so that exactly one match
takes place per court), and the player with higher skill wins the match (in other words, there are no upsets).
Afterwards, for i = 2, 3, . . . , N , the winner of court i moves to court i − 1 and the loser of court i stays on
court i; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court N .

Find all positive integers M such that, regardless of the initial pairing, the players 2, 3, . . . , N + 1 all change
courts immediately after the Mth round.

Ray Li

Answer. M ≥ N + 1.

Solution. It is enough to prove the claim for M = N + 1. (Why?)

After the kth move (k ≥ 0), let a
(k)
i ∈ [0, 2] be the number of rookies (players N + 2, . . . , 2N) in court i so

that a
(k)
1 + · · ·+ a

(k)
N = N − 1.

The operation from the perspective of the rookies can be described as follows: a
(k)
i = 2 for some i ∈ {2, . . . , N}

means we “transfer” a rookie from court i to court i − 1 on the (k + 1)th move, and a
(k)
1 ≥ 1 means we

“transfer” a rookie from court 1 to court N on the (k+ 1)th move. Note that if a
(k)
i ≥ 1 for some k ≥ 0 and

i ∈ {2, . . . , N}, we must have a
(k+r)
i ≥ 1 for all r ≥ 0. (*)

But we also know that all “excesses” can be traced back to “transfers”. More precisely, if a
(k)
i = 2 for some

i ∈ {2, . . . , N − 1} and k ≥ 1, we must have a
(k−1)
i+1 = 2; if a

(k)
N = 2, we must have a

(k−1)
1 ≥ 1; and if a

(k)
1 ≥ 1,

we must either have (i) a
(k−1)
2 = 2 or (ii) a

(k−1)
1 = 2 and if k ≥ 2, a

(k−2)
2 = 2.

If a
(N)
i = 2 for some i ∈ {2, . . . , N} or a

(N)
1 ≥ 1, then by the previous paragraph and (*) we see that a

(N)
i ≥ 1

for i = 2, . . . , N , contradicting the fact that a
(N)
1 + · · ·+a(N)

N = N−1. (Here possibility (ii) from the previous
paragraph forces us to consider the Nth move rather than the (N − 1)th move.)

Hence a
(N)
1 = 0, a

(N)
2 = · · · = a

(N)
N = 1, and of course player 1 stabilizes after at most N − 1 moves (he

always wins), so we get a bound of ≥ 1 + max(N − 1, N) = N + 1.

We cannot replace the condition M ≥ N + 1 with M ≥ N ′ for any N ′ < N . Indeed, any configuration with

(a
(0)
1 , . . . , a

(0)
N ) = (2, 0, 0, 1, 1, 1, 1, . . . , 1) shows that N + 1 is the “best bound possible.” �

This problem was proposed by Ray Li. This solution was given by Victor Wang.

Remark. The key idea (which can be easily found by working backwards) is to focus on the rookies. Asking
for the minimum number of rounds required for stablization rather than giving the answer directly (here
N + 1) may make the problem slightly more difficult, but once one conceives the idea of isolating rookies,
even this version is not much harder.
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G1 Geometry – Solutions ELMO 2013

G1
Let ABC be a triangle with incenter I. Let U , V and W be the intersections of the angle bisectors of angles
A, B, and C with the incircle, so that V lies between B and I, and similarly with U and W . Let X, Y ,
and Z be the points of tangency of the incircle of triangle ABC with BC, AC, and AB, respectively. Let
triangle UVW be the David Yang triangle of ABC and let XY Z be the Scott Wu triangle of ABC. Prove
that the David Yang and Scott Wu triangles of a triangle are congruent if and only if ABC is equilateral.

Owen Goff

Solution. The angles of the triangles are (A+B
2 , B+C

2 , C+A
2 ) and (

A+B
2 +B+C

2

2 ,
B+C

2 +C+A
2

2 ,
C+A

2 +A+B
2

2 ) by quick

angle chasing. Since the sets (x, y, z), (x+y2 , y+z2 , z+x2 ) are equal iff x = y = z, we are done. �

This problem and solution were proposed by Owen Goff.
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G2
Let ABC be a scalene triangle with circumcircle Γ, and let D,E,F be the points where its incircle meets
BC, AC, AB respectively. Let the circumcircles of 4AEF , 4BFD, and 4CDE meet Γ a second time at
X,Y, Z respectively. Prove that the perpendiculars from A,B,C to AX,BY,CZ respectively are concurrent.

Michael Kural

Solution 1. We claim that this point is the reflection of I the incenter over O the circumcenter. Since
∠AEI = ∠AFI = π

2 , AFIE is cyclic with diameter AI, so ∠AXI = 90. Also, if M is the midpoint of AX,
then OM ⊥ AX, so clearly the reflection of I over O lies on each of the perpendiculars. �

Solution 2. Extend BY and CZ, CZ and AZ, and AX and BY to meet at P,Q,R respectively. Note that
P is the radical center of the circumcircles of BDF and CDE and Γ, so P lies on the radical axis DI of
the two circumcircles (I lies on both circles as we showed before). Then the perpendiculars from P,Q,R to
BC,AC,AB concur at I, so by Carnot’s theorem

PB2 − PC2 +QC2 −QA2 +RA2 −RB2 = 0 =⇒ AQ2 −AR2 +BR2 −BP 2 + CP 2 − CQ2 = 0.

Again by Carnot’s theorem the perpendiculars from A,B,C to QR,PR,PQ concur, which was what we
wanted. (In other words, triangles ABC and PQR are orthologic.) �

This problem and its solutions were proposed by Michael Kural.
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G3
In 4ABC, a point D lies on line BC. The circumcircle of ABD meets AC at F (other than A), and the
circumcircle of ADC meets AB at E (other than A). Prove that as D varies, the circumcircle of AEF always
passes through a fixed point other than A, and that this point lies on the median from A to BC.

Allen Liu

Solution 1. Invert about A. We get triangle ABC with a variable point D on its circumcircle. CD meets
AB at E, BD meets AC at F . The pole of EF is the intersection of AD and BC, so it lies on BC, and the
fixed pole of BC lies on EF , proving the claim. Also, since pole of BC is the intersection of the tangents
from B and C, the point lies on the symmedian, which is the median under inversion. �

This first solution was suggested by Michael Kural.

Solution 2. Use barycentric coordinates with A = (1, 0, 0), etc. Let D = (0 : m : n) with m+ n = 1. Then
the circle ABD has equation −a2yz− b2zx− c2xy+ (x+ y+ z)

(
a2m · z

)
. To intersect it with side AC, put

y = 0 to get (x+ z)(a2mz) = b2zx =⇒ b2

a2m · x = x+ z =⇒
(

b2

a2m − 1
)
x = z, so

F = (a2m : 0 : b2 − a2m)

Similarly,
G = (a2n : c2 − a2n : 0).

Then, the circle (AFG) has equation

−a2yz − b2zx− c2xy + a2(x+ y + z)(my + nz) = 0.

Upon picking y = z = 1, we easily see there exists a t such that (t : 1 : 1) is on the circle, implying the
conclusion. �

This second solution was suggested by Evan Chen.

Solution 3. Let M be the midpoint of BC. By power of a point, c · BE + b · CF = a · BD + a · CD = a2

is constant. Fix a point D0; and let P0 = AM ∩ (AE0F0). For any other point D, we have E0E
F0F

= b
c =

sin∠BAM
sin∠CAM = P0E0

P0F0
from the extended law of sines, so triangles P0E0E and P0F0F are directly similar, whence

AEP0F is cyclic, as desired. �

This third solution was suggested by Victor Wang.

This problem was proposed by Allen Liu.
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G4*
Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and AC again at
S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect ω at D and E,
respectively. The internal angle bisector of ∠BDE meets line ER at K. Prove that if BE = BR, then
∠ELK = 1

2∠BCD.

Evan Chen

Solution 1.

B C

S
R

A

D

E

L

K

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR centered at B, and
notice that ∠ECR = 1

2∠EBR, implying that it lies on the circle.

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of 4CDE. Then, K is the incenter

of 4LED, so ∠ELK = 1
2∠ELD = 1

2

(
ÊD+B̂C

2

)
= 1

2
B̂ED

2 = 1
2∠BCD. �

This problem and solution were proposed by Evan Chen.

Solution 2. Note ∠EBA = ∠ECA = ∠SCR = ∠SBR = ∠ABR, so AB bisects ∠EBR. Then by symmetry
∠BEA = ∠BRA, so ∠BCR = ∠BCA = 180 − ∠BEA = 180 − ∠BRA = ∠BRC, so BE = BR = BC.
Proceed as above. �

This second solution was suggested by Michael Kural.
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G5
Let ω1 and ω2 be two orthogonal circles, and let the center of ω1 be O. Diameter AB of ω1 is selected so
that B lies strictly inside ω2. The two circles tangent to ω2, passing through O and A, touch ω2 at F and
G. Prove that FGOB is cyclic.

Eric Chen

Solution. Invert about ω1. Then the problem becomes: “ω1 and ω2 are orthogonal circles. Show that if A
is on ω1 and outside of ω2, and its tangents to ω2 touch ω2 at F,G, then its antipode B lies on FG.”

Now let P be the center of ω2, and let AP intersect FG at E. Then ω1 is constant under an inversion with
respect to ω2, so E, the inverse of A, is on ω1. Then ∠AEB = π

2 , but AE ⊥ FG so B is on FG and we are
done. �

This problem was proposed by Eric Chen. This solution was given by Michael Kural.
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G6
Let ABCDEF be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define X =
AB ∩DE, Y = BC ∩ EF , and Z = CD ∩ FA. Prove that

XY

XZ
=
BE

AD

sin |∠B − ∠E|
sin |∠A− ∠D|

.

Victor Wang

Solution. Use complex numbers with a, b, c, d, e, f on the unit circle, so x = ab(d+e)−de(a+b)
ab−de and so on. It

will be simpler to work with the conjugates of x, y, z, i.e. x = a+b−d−e
ab−de , etc. Observing that

x− y =
a+ b− d− e
ab− de

− b+ c− e− f
bc− ef

=
(a− d)(cb− fe)− (c− f)(ab− de) + (b− e)(bc− ef − ab+ de)

(ab− de)(bc− ef)

=
(b− e)(fa− cd+ (bc− ef − ab+ de))

(ab− de)(bc− ef)
,

we find (by “cyclically shifting” the variables by one so that x− y → z − x) that

x− y
x− z

=
b− e
a− d

af − cd
bc− ef

=
b− e
a− d

a/c− d/f
b/f − e/c

,

from which the desired claim readily follows. �

This problem and solution were proposed by Victor Wang.
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G7*
Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect ω at D and E
respectively. Let O1 be the center of the circle through D tangent to AC at C, and let O2 be the center
of the circle through E tangent to AB at B. Prove that O1, O2, and the nine-point center of ABC are
collinear.

Michael Kural

Solution 1. Let M,N be the midpoints of AC,AB, respectively. Also, let BD,CE intersect (O1) for a
second time at X1, Y1, and let CE,BD intersect (O2) for a second time at X2, Y2.

Now, by power of a point we have

MX1 ·MD = MC2 = MC ·MA = MD ·MB,

so MX1 = MB, and X1 is the reflection of B over M . Similarly, X2 is the reflection of C over N .

(Alternatively, let X ′1 be the reflection of B over M , and let D′ be the intersection of the circles through X ′1
tangent to AC at A,C respectively. Then by radical axes X ′1D

′ bisects AC and ∠ADC = 180−∠AX ′1C =
180− ∠ABC. This implies D′ = D and X ′1 = X1.)

Now let ZX1X2 be the antimedial triangle of ABC, and observe that ∠X2Y1X1 = ∠CDB = A = ∠CEB =
∠X2Y2X1. But A = ∠X2ZX1, so X1Y1 ‖ EB, X2Y2 ‖ DC, and X1X2Y2ZY1 is cyclic. Hence the lines
through the centers of (O1), (ZX1X2), and (ABC), (O2) are parallel. In other words, O1H ‖ OO2 O1O ‖ HO2

(where O,H are the circumcenter and orthocenter of ABC), so O1HO2O is a parallelogram. Thus the
midpoint of O1O2 is the midpoint N of OH. �

This problem and solution were proposed by Michael Kural.

Remark. In fact, a −2 dilation about G sends B,D,C,E,O,A to X1, Y2, X2, Y1, H, Z.

Solution 2. Let (ABC) be the unit circle in the complex plane. Using the spiral similarities D : CO1 → AO
and E : BO2 → AO (since AC is tangent to (O1) and AB is tangent to (O2)), it’s easy to compute

o1 = c(a+c−2b)
c−b and o2 = b(a+b−2c)

b−c (after solving for d, e via bd(a+c)−ac(b+d)
bd−ac = m = a+c

2 ), which gives us
o1 + o2 = a+ b+ c = 2n. �

This second solution was suggested by Victor Wang.
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G8
Let ABC be a triangle, and let D, A, B, E be points on line AB, in that order, such that AC = AD and
BE = BC. Let ω1, ω2 be the circumcircles of 4ABC and 4CDE, respectively, which meet at a point
F 6= C. If the tangent to ω2 at F cuts ω1 again at G, and the foot of the altitude from G to FC is H, prove
that ∠AGH = ∠BGH.

David Stoner

Solution 1. Let the centers of ω1 and ω2 be O1 and O2. Extend CA and CB to hit ω2 again at K and L,
respectively. Extend CO2 to hit ω2 again at R. Let M be the midpoint of arc ÂB, N the midpoint of arc
F̂C on ω2, and T the intersection of FC and GM .

It’s easy to see that CK = CL = DE, so O2 is the C-excenter of triangle ABC. Hence C, M , and O2 are
collinear. Now ∠CO2O1 = ∠CO2N = 2∠CRN = ∠CRF = ∠CFG = ∠CMG, so MT is parallel to O1O2,
and thus perpendicular to CF . But M is the midpoint of arc ÂB, so ∠AGM = ∠MGB, and we’re done. �

Solution 2. The observation that AO2 is the perpendicular bisector of DC is not crucial; the key fact is just
that ∠GFC = ∠FEC, since GF is tangent to ω2. Indeed, this yields

∠AGH = ∠AGF − ∠HGF = ∠ACF − 90◦ + ∠GFC = ∠ACF − 90◦ + ∠FEC.

But ∠ACF = 180◦ − ∠DCA − ∠FED, α = ∠DCA, and β = ∠CEB = ∠FED − ∠FEC, so ∠AGH =
90◦ − α− β = γ, where α, β, γ are half-angles. By symmetry, ∠BGH = γ as well, so we’re done. �

This problem and its solutions were proposed by David Stoner.
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G9
Let ABCD be a cyclic quadrilateral inscribed in circle ω whose diagonals meet at F . Lines AB and CD
meet at E. Segment EF intersects ω at X. Lines BX and CD meet at M , and lines CX and AB meet at
N . Prove that MN and BC concur with the tangent to ω at X.

Allen Liu

Solution. Let EF meet BC at P , and let K be the harmonic conjugate of P with respect to BC. View EP
as a cevian of 4EBC. Since the cevians AC, BD and EP concur, it follows that AD passes through K.
Similarly, MN passes through K. However, by Brokard’s theorem, EF is the pole of K with respect to ω,
so KX is tangent to ω. Therefore, the three lines in question concur at K. �

This problem and solution were proposed by Allen Liu.
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G10*
Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

Solution 1. Let J be the second intersection of ω and AC, and X be the intersection of BF and AC. It’s
well-known that DJFC is harmonic; perspectivity wrt B implies AJXC is also harmonic. Then AJ

JX =
AC
CX =⇒ (AJ)(CX) = (AC)(JX). This can be rearranged to get

(AJ)(CX) = (AJ + JX +XC)(JX) =⇒ 2(AJ)(CX) = (JX +AJ)(JX +XC) = (AX)(CJ),

so (
AX

XC

)(
CJ

JA

)
= 2.

But CJ
JA = AD

DB , so by Ceva’s we have BH = 2HC, as desired. �

Solution 2. Let J be the second intersection of ω and AC. It’s well-known that DJFC is harmonic; thus
we have (DJ)(FC) = (JF )(DC). By Ptolemy’s, this means

(DF )(JC) = (DJ)(FC) + (JF )(DC) = 2(JD)(CF ) =⇒
(
JC

JD

)(
FD

FC

)
= 2.

Yet JC = DB by symmetry, so this becomes

2 =

(
DB

JD

)(
FD

FC

)
=

(
sinDJB

sin JBD

)(
sinFCD

sinFDC

)
=

(
sinDCB

sinACD

)(
sinFBA

sinCBF

)
.

Thus by (trig) Ceva’s we have sinBAH
sinCAH = 2, and since AB = AC it follows that BH = 2HC, as desired. �

This problem and its solutions were proposed by David Stoner.
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G11
Let 4ABC be a nondegenerate isosceles triangle with AB = AC, and let D,E, F be the midpoints of
BC,CA,AB respectively. BE intersects the circumcircle of 4ABC again at G, and H is the midpoint of
minor arc BC. CF ∩DG = I,BI ∩AC = J . Prove that ∠BJH = ∠ADG if and only if ∠BID = ∠GBC.

David Stoner

Solution. By barycentric coordinates on 4ABC it is easy to obtain G = (a2 + c2 : −b2 : a2 + c2). Then, one
can compute I = (a2+c2 : a2+c2 : b2+2(a2+c2)), from which it follows that J = (a2+c2 : 0 : b2+2(a2+c2)).

Now we use complex numbers. Set D = 0, C = 1, B = −1, A = ri for r ∈ R+, K = r
3 , and H = − i

r . Now,

upon using the vector definition for barycentric coordinates, we obtain I = (r2+5)(ri)+(r2+5)(−1)+(3r2+11)(1)
5r2+21 ,

or

I =
2r2 + 6

5r2 + 21
+
r(r2 + 5)

5r2 + 21
i.

Similarly, we can get

J =
3r2 + 11

4r2 + 16
+
r(r2 + 5)

4r2 + 16
i.

Claim. ∠BID = ∠GBC ⇐⇒ r6 + 9r4 − 17r2 − 153 = 0.

Proof. Let V (a+ bi) = b
a for a, b ∈ R, and note V (nz) = V (z) for all n ∈ R. Then,

∠BID = ∠GBC ⇐⇒ V

(
D − I
B − I

)
= V

(
G−B
C −B

)
Obviously the right-hand side is r

3 . Meanwhile,

−I
1− I

=
I

I + 1

=
2r2+6
5r2+21 + r(r2+5)

5r2+21 i

7r2+27
5r2+21 + r(r2+5)

5r2+21 i

=
1

real

[(
(2r2 + 6) + r(r2 + 5)i

) (
(7r2 + 26)− r(r2 + 5)i

)]
=

1

real

[(
r6 + 24r4 + 121r2 + 162

)
+ (5r2 + 21)(r)(r2 + 5)i

]

Hence, V
(

I
I+1

)
= (5r2+21)(r)(r2+5)

r6+24r4+121r2+161 . This is equal to r/3 if and only if

r6 + 24r4 + 121r2 + 162− 3(5r2 + 21)(r2 + 5) = 0.

Expanding gives the conclusion. �

Claim. ∠BJH = ∠ADG ⇐⇒ 2r8 + 8r6 − 28rr − 136r2 − 102 = 0.

Proof. We proceed in the same spirit. It’s evident that V
(
K−D
G−D

)
= V (I)−1 = 2r2+6

r(r2+5) . On the other hand,
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we can compute

− 1
r · i− J
−1− J

=
rJ + i

r(1 + J)

=
1

r
·
r(3r2+11)
4r2+16 + r2(r2+5)+(4r2+16)

4r2+16 i

7r2+27
4r2+16 + r(r2+5)

4r2+16 i

=
1

real

[(
r(3r2 + 11) + (r4 + 9r2 + 16

)
i
] [

(7r2 + 27)− r(r2 + 5)i
]

=
1

real

[
r(r6 + 35r4 + 219r2 + 377) + i(4r6 + 64r4 + 300r2 + 432)

]
Hence, V

(
H−J
B−J

)
= 4r6+64r4+300r2+432

r(r6+35r4+219r2+377) . So, the equality occurs when

(r2 + 5)(4r6 + 64r4 + 300r2 + 432)− (2r2 + 6)(r6 + 35r4 + 219r2 + 377) = 0.

Expand again. �

Now all that’s left to do is factor these polynomials! The former one is (r4 − 17)(r2 + 9), and the latter is
2(r2+1)(r2+3)(r4−17). Restricted to positive r we see that both are zero if and only if r = 4

√
17. Therefore

the conditions are equivalent, occuring if and only if AD = 4
√

17. �

This problem was proposed by David Stoner. This solution was given by Evan Chen.
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G12* Geometry – Solutions ELMO 2013

G12*
Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

Solution. Let α be the half-angles of 4ABC, r inradius, and u, v, w tangent lengths to the incircle. Let
T = MP ∩ NQ so that I is the incenter of 4MNT . Then ∠IPT = ∠IXY = α = ∠IY X = ∠IQT gives
4TIP ∼ 4TIQ, so P, I,Q are collinear iff ∠TIP = 90◦ iff ∠MTN = 180◦ − 2α iff ∠MIN = 180◦ − α iff
MI2 = MX ·MN .

First suppose I is the center of γ. Since A, I are symmetric about XY , ∠MAN = ∠MIN . But P, I,Q are
collinear iff ∠MIN = 180◦ − α, so because arcs AN and BM sum to 90◦, P, I,Q are collinear iff arcs BM ,
MA have the same measure. Let M ′ = CI ∩ ω; then ∠BM ′I = ∠BM ′C = 90◦ − ∠BXI, so M ′XIBZ is
cyclic and ∠M ′XB = ∠M ′IB = 180◦ −∠BIC = 45◦ = ∠AXY , as desired. (There are many other ways to
finish as well.)

Conversely, if P, I,Q are collinear, then by power of a point, m(m + 2t) = MI2 − r2 = MX ·MN − r2 =
m(m+ 2t+ n)− r2, so mn = r2. But we also have m(n+ 2t) = uv and n(m+ 2t) = uw, so

r2 = mn =
uv − r2

2t

uw − r2

2t
=

uv(u+v)
u+v+w

2r cosα

uw(u+w)
u+v+w

2r cosα
=

r2

4 cos2 α

(u+ v)(u+ w)

vw
.

Simplifying using cos2 α = u2

u2+r2 = u(u+v+w)
(u+v)(u+w) , we get

0 = (u+ v)2(u+ w)2 − 4uvw(u+ v + w) = (u(u+ v + w)− vw)2,

which clearly implies (u+ v)2 + (u+ w)2 = (v + w)2, as desired. �

This problem was proposed by David Stoner. This solution was given by Victor Wang.
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G13 Geometry – Solutions ELMO 2013

G13
In 4ABC, AB < AC. D and P are the feet of the internal and external angle bisectors of ∠BAC,
respectively. M is the midpoint of segment BC, and ω is the circumcircle of 4APD. Suppose Q is on
the minor arc AD of ω such that MQ is tangent to ω. QB meets ω again at R, and the line through R
perpendicular to BC meets PQ at S. Prove SD is tangent to the circumcircle of 4QDM .

Ray Li

Solution.

A

B CDP MO

Q

R

S

We begin with a lemma.

Lemma 1. Let (A,B;C,D) be a harmonic bundle. Then the circles with diameter AB and CD are orthog-
onal.

Proof. Let ω be the circle with diameter AB. Then D lies on the pole of C with respect to ω. Hence the
inversion at ω sends C to D and vice-versa; so it fixes the circle with diameter CD, implying that the two
circles are orthogonal. �

It’s well known that (P,D;B,C) is harmonic. Let O be the midpoint of PD. If we let Q′ be the intersection
of the circles with diameter PD and BC, then ∠OQ′M = π

2 , implying that Q′ = Q. It follows that Q lies
on the circle with diameter BC; this is the key observation.

In that case, since (P,D;B,C) is harmonic and ∠PQD = π
2 , we see that QD is an angle bisector (this

could also be realized via Apollonian circles). But ∠BQC = π
2 as well! So we find that ∠PQB = ∠BQD =

∠DQC = π
4 . Then, R is the midpoint of arc PD, so SP = SD, insomuch as SO ⊥ PD.

Hence, we can just angle chase as ∠DQM = ∠SPD = ∠SDP , implying the conclusion. �

This problem and solution were proposed by Ray Li.
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G14 Geometry – Solutions ELMO 2013

G14
Let O be a point (in the plane) and T be an infinite set of points such that |P1P2| ≤ 2012 for every two
distinct points P1, P2 ∈ T . Let S(T ) be the set of points Q in the plane satisfying |QP | ≤ 2013 for at least
one point P ∈ T .

Now let L be the set of lines containing exactly one point of S(T ). Call a line `0 passing through O bad if
there does not exist a line ` ∈ L parallel to (or coinciding with) `0.

(a) Prove that L is nonempty.

(b) Prove that one can assign a line `(i) to each positive integer i so that for every bad line `0 passing
through O, there exists a positive integer n with `(n) = `0.

David Yang

Solution 1. (a) Instead of unique lines we work with good directions (e.g. northernmost points for the
direction “north”). Since S is closed and bounded there is a diameter, say AB. Then B is the unique

farthest point in the direction of the vector
−−→
AB (if there was another point C that was the same or farther

in that direction then AC would be longer than AB). �

Solution 2. (b) We can work instead with the convex hull of S, since this does not change if directions are
good. Note that bad directions correspond to lines segments that are boundaries of portions of the convex
hull (i.e. “sides” of the convex hull). For each direction, consider the corresponding side. Now, consider
the area 1 unit in front of the side. For distinct directions, these areas don’t intersect, so there must be
a countable number of them (more precisely, there are a finite number of squares with area in the interval
( 1
n+1 ,

1
n ] for every positive integer n, and thus we can enumerate the bad directions.) �

This problem and the above solutions were proposed by David Yang.

Solution 3. (b) Alternatively, take an interior point and look at the angle swept out by each side (positive
numbers with finite sum). �

This third solution was suggested by Mark Sellke.

Remark. We only need S to be a compact (closed and bounded) set in Rn for (a), and a compact set
in R2 for (b). The current elementary formulation, however, preserves the essence of the problem. Note
that the same proof works for (a), while a hyper-cylinder serves as a counterexample for (b) in Rn (more
specifically, the set of points satisfying, say, x21 + x22 ≤ 1 and 0 ≤ x3, . . . , xn ≤ 1). Indeed, for each angle
θ ∈ [0, 2π), the hyper-plane with equation sin θx1− cos θx2 = 0 is tangent to the cylinder at the set of points
of the form (cos θ, sin θ, x3, . . . , xn), yet [0, 2π) (which bijects to the real numbers) is uncountable. More
precisely, the set of points farthest 〈cos θ, sin θ, 0, . . . , 0〉 direction is simply the set of points that maximize
〈cos θ, sin θ, 0, . . . , 0〉 · 〈x1, x2, 0, . . . , 0〉 (which is at most 1, by the Cauchy-Schwarz inequality), which is just
the set of points of the form (cos θ, sin θ, x3, . . . , xn).
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N1 Number Theory – Solutions ELMO 2013

N1
Find all ordered triples of non-negative integers (a, b, c) such that a2 + 2b + c, b2 + 2c + a, and c2 + 2a + b
are all perfect squares.

Note: This problem was withdrawn from the ELMO Shortlist and used on ksun48’s mock AIME.

Matthew Babbitt

Answer. We have the trivial solutions (a, b, c) = (0, 0, 0) and (a, b, c) = (1, 1, 1), as well as the solution
(a, b, c) = (127, 106, 43) and its cyclic permutations.

Solution. The case a = b = c = 0 works. Without loss of generality, a = max{a, b, c}. If b and c are both
zero, it’s obvious that we have no solution. So, via the inequality

a2 < a2 + 2b+ c < (a+ 2)2

we find that a2 + 2b+ c = (a+ 1)2 =⇒ 2a+ 1 = 2b+ c. So,

a = b+
c− 1

2
.

Let c = 2k + 1 with k ≥ 0; plugging into the given, we find that

b2 + b+ 2 + 5k and 4k2 + 6k + 3b+ 1

are both perfect squares. Multiplying both these quantities by 4, and setting x = 2b+ 1 and y = 4k+ 3, we
find that

x2 + 5y − 8 and y2 + 6x− 11

are both even squares.

We may assume x, y ≥ 3. We now have two cases, both of which aren’t too bad:

• If x ≥ y, then x2 < x2 + 5y − 8 < (x + 3)2. Since the square is even, x2 + 5y − 8 = (x + 1)2. Then,
x = 5y−9

2 and we find that y2 + 15y− 38 is an even square. Since y2 < y2 + 15y− 38 < (y+ 8)2, there
are finitely many cases to check. The solutions are (x, y) = (3, 3) and (x, y) = (213, 87).

• Similarly, if x ≤ y, then y2 < y2 + 6x− 11 < (y+ 3)2, so y2 + 6x− 11 = (y+ 1)2. Then, y = 3x− 6 and
we find that x2 + 15x − 38 (!) is a perfect square. Amusingly, this is the exact same thing (whether
this is just a coincidence due to me selecting the equality case to be x = y, I’m not sure). Here, the
solutions are (x, y) = (3, 3) and (x, y) = (87, 255).

Converting back, we see the solutions are (0, 0, 0), (1, 1, 1) and (127, 106, 43), and permutations. �

This problem and solution were proposed by Matthew Babbitt.
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N2* Number Theory – Solutions ELMO 2013

N2*
For what polynomials P (n) with integer coefficients can a positive integer be assigned to every lattice point
in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any n × n × n grid of lattice
points is divisible by P (n)?

Andre Arslan

Answer. All P of the form P (x) = cxk, where c is a nonzero integer and k is a nonnegative integer.

Solution. Suppose P (x) = xkQ(x) with Q(0) 6= 0 and Q is nonconstant; then there exist infinitely many
primes p dividing some Q(n); fix one of them not dividing Q(0), and take a sequence of pairwise coprime
integers m1, n1,m2, n2, . . . with p | Q(mi), Q(ni) (we can do this with CRT).

Let f(x, y, z) be the number written at (x, y, z). Note that P (m) divides every mn×mn×m grid and P (n)
divides every mn×mn×n grid, so by Bezout’s identity, (P (m), P (n)) divides every mn×mn× (m,n) grid.
It follows that p divides every mini×mini×1 grid. Similarly, we find that p divides every minimjnj×1×1
grid whenever i 6= j, and finally, every 1× 1× 1 grid. Since p was arbitrarily chosen from an infinite set, f
must be identically zero, contradiction.

For the other direction, take a solution g to the one-dimensional case using repeated CRT (the key relation
gcd(P (m), P (n)) = P (gcd(m,n)) prevents “conflicts”): start with a positive multiple of P (1) 6= 0 at zero,
and then construct g(1), g(−1), g(2), g(−2), etc. in that order using CRT. Now for the three-dimensional
version, we can just let f(x, y, z) = g(x). �

This problem and solution were proposed by Andre Arslan.

Remark. The crux of the problem lies in the 1D case. (We use the same type of reasoning to “project” from
d dimension to d− 1 dimensions.) Note that the condition P (n) | g(i) + · · ·+ g(i+n− 1) (for the 1D case) is
“almost” the same as P (n) | g(i)−g(i+n), so we immediately find gcd(P (m), P (n)) | g(i)−g(i+gcd(m,n))
by Bezout’s identity. In particular, when m,n are coprime, we will intuitively be able to get gcd(P (m), P (n))
as large as we want unless P is of the form cxk (we formalize this by writing P = xkQ with Q(0) 6= 0).

Conversely, if P = cxk, then gcd(P (m), P (n)) = P (gcd(m,n)) renders our derived restriction gcd(P (m), P (n)) |
g(i) − g(i + gcd(m,n)) superfluous. So it “feels easy” to find nonconstant g with P (n) | g(i) − g(i + n) for
all i, n, just by greedily constructing g(0), g(1), g(−1), . . . in that order using CRT. Fortunately, g(i) + · · ·+
g(i+m− 1)− g(i)− · · · − g(i+ n− 1) = g(i+ n) + · · ·+ g(i+ n+ (m− n)− 1) for m > n, so the inductive
approach still works for the stronger condition P (n) | g(i) + · · ·+ g(i+ n− 1).

Remark. Note that polynomial constructions cannot work for P = cxd+1 in d dimensions. Suppose otherwise,
and take a minimal degree f(x1, . . . , xd); then f isn’t constant, so f ′(x1, . . . , xd) = f(x1 + 1, . . . , xd + 1) −
f(x1, . . . , xd) is a working polynomial of strictly smaller degree.
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N3 Number Theory – Solutions ELMO 2013

N3
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct numbers of the form
ab, where a ∈ {3, 4, 5, 6} and b is a positive integer.

Matthew Babbitt

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 + · · · + an. Then
for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show that a0− (a1 +
· · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong induction on N .
The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one of the
inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with 3 ≤ N ′ < N and then
apply the inductive hypothesis; the construction for N ′ cannot use any of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely natural, it is not
immediately obvious that one should consider 3 ≤ N − (x1 + · · · + xk) < xk + 3 rather than the stronger
bound 3 ≤ N − (x1 + · · ·+xk) < xk. In particular, the solution method above does not work if one attempts
to get the latter.
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N4
Find all triples (a, b, c) of positive integers such that if n is not divisible by any integer less than 2013, then
n+ c divides an + bn + n.

Evan Chen

Answer. (a, b, c) = (1, 1, 2).

Solution. Let p be an arbitrary prime such that p ≥ 2011 · max{abc, 2013}. By the Chinese Remainder
Theorem it is possible to select an integer n satisfying the following properties:

n ≡ −c (mod p)

n ≡ −1 (mod p− 1)

n ≡ −1 (mod q)

for all primes q ≤ 2011 not dividing p − 1. This will guarantee that n is not divisible by any integer less
than 2013. Upon selecting this n, we find that

p | n+ c | an + bn + n

which implies that
an + bn ≡ c (mod p)

But n ≡ −1 (mod p− 1); hence an ≡ a−1 (mod p) by Euler’s Little Theorem. Hence we may write

p | ab(a−1 + b−1 − c) = a+ b− abc.

But since p is large, this is only possible if a+ b− abc is zero. The only triples of positive integers with that
property are (a, b, c) = (2, 2, 1) and (a, b, c) = (1, 1, 2). One can check that of these, only (a, b, c) = (1, 1, 2)
is a valid solution. �

This problem and solution were proposed by Evan Chen.
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N5* Number Theory – Solutions ELMO 2013

N5*
Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and A1, A2, . . . , A2013 be 2013
(possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi−1} for i = 1, 2, . . . , 2013. Prove that there is a positive integer
N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Victor Wang

Remark. As Solution 3 shows, the bound can in fact be tightened to
∏2013
i=1 (|Ai|+ 1).

Solution 1. We will show that the smallest integer N such that N /∈ Ai (mod mi) is less than the bound
provided.

The idea is to use pigeonhole and the “Lagrange interpolation”-esque representation of CRT systems. Define
integers ti satisfying ti ≡ 1 (mod mi) and ti ≡ 0 (mod mj) for j 6= i. If we find nonempty sets Bi of distinct
residues mod mi with Bi − Bi (mod mi) and Ai (mod mi) disjoint, then by pigeonhole, a positive integer
solution with N ≤ m1m2···m2013

|B1|·|B2|···|B2013| must exist (more precisely, since

b1t1 + · · ·+ b2013t2013 (mod m1m2 · · ·m2013)

is injective over B1 × B2 × · · · × B2013, some two consecutively ordered solutions must differ by at most
m1m2···m2013

|B1|·|B2|···|B2013| ).

On the other hand, since 0 /∈ Ai for every i, we know such nonempty Bi must exist (e.g. take Bi = {0}).
Now suppose |Bi| is maximal; then every x (mod mi) lies in at least one of Bi, Bi + Ai, Bi − Ai (note
that x − x = 0 is not an issue when considering (Bi ∪ {x}) − (Bi ∪ {x})), or else Bi ∪ {x} would be a
larger working set. Hence mi ≤ |Bi|+ |Bi + Ai|+ |Bi − Ai| ≤ |Bi|(1 + 2|Ai|), so we get an upper bound of∏2013
i=1

mi
|Bi| ≤

∏2013
i=1 (2|Ai|+ 1), as desired. �

Remark. We can often find |Bi| significantly larger than mi
2|Ai|+1 (the bounds |Bi +Ai|, |Bi−Ai| ≤ |Bi| · |Ai|

seem really weak, and Bi + Ai, Bi − Ai might not be that disjoint either). For instance, if Ai ≡ −Ai
(mod mi), then we can get (the ceiling of) mi

|Ai|+1 .

Remark. By translation and repeated application of the problem, one can prove the following slightly
more general statement: “Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and
A1, A2, . . . , A2013 be 2013 (possibly empty) sets with Ai a proper subset of {1, 2, . . . ,mi} for i = 1, 2, . . . , 2013.

Then for every integer n, there exists an integer x in the range (n, n +
∏2013
i=1 (2|Ai| + 1)] such that x /∈ Ai

(mod mi) for i = 1, 2, . . . , 2013. (We say A is a proper subset of B if A is a subset of B but A 6= B.)”

Remark. Let f be a non-constant integer-valued polynomial with gcd(. . . , f(−1), f(0), f(1), . . .) = 1. Then
by the previous remark, we can easily prove that there exist infinitely many positive integers n such that
the smallest prime divisor of f(n) is at least c log n, where c > 0 is any constant. (We take mi the ith prime
and Ai ≡ {n : mi | f(n)} (mod mi)—if f = a

bx
d + · · · , then |Ai| ≤ d for all sufficiently large i.)

Solution 2. We will mimic the proof of 2010 RMM Problem 1.

Suppose 1, 2, . . . , N (for some N ≥ 1) can be covered by the sets Ai (mod mi).

Observe that for fixed m and 1 ≤ a ≤ m, exactly 1 + bN−am c of 1, 2, . . . , N are a (mod m). In particular, we

have lower and upper bounds of N−m
m and N+m

m , respectively, so PIE yields

N ≤
∑
i

|Ai|
N +mi

mi
−
∑
i<j

|Ai| · |Aj |
N −mimj

mimj
± · · · .

It follows that

N
∏
i

(
1− |Ai|

mi

)
≤
∏
i

(1 + |Ai|) ,
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N5* Number Theory – Solutions ELMO 2013

so N ≤
∏
i

mi
mi−|Ai| (1 + |Ai|).

Note that mi
mi−|Ai| ≤

2|Ai|+1
|Ai|+1 iff mi ≥ 2|Ai|+ 1, so we’re done unless mi ≤ 2|Ai| for some i.

In this case, there exists (by induction) 1 ≤ N ≤
∏
j 6=i(2|Aj | + 1) such that N /∈ m−1i Aj (mod mj) for all

j 6= i. Thus miN /∈ Aj (mod mj) and we trivially have miN ≡ 0 /∈ Ai (mod mi), so miN ≤
∏
k(2|Ak|+ 1),

as desired. �

This problem and the above solutions were proposed by Victor Wang.

Solution 3. We can in fact get a bound of
∏

(|Ak|+ 1) directly.

Let t = 2013. Suppose 1, 2, . . . , N are covered by the Ak (mod mk); then

zn =
∏

1≤k≤t,a∈Ak

(
1− e

2πi
mk

(n−a)
)

is a linear recurrence in e
2πi

∑t
k=1

jk
mk (where each jk ranges from 0 to |Ak|). But z0 6= 0 = z1 = · · · = zN ,

so N must be strictly less than the degree
∏

(|Ak| + 1) of the linear recurrence. Thus 1, 2, . . . ,
∏

(|Ak| + 1)
cannot all be covered, as desired. �

This third solution was suggested by Zhi-Wei Sun.

Remark. Solution 3 doesn’t require the mk to be coprime. Note that if |A1| = · · · = |At| = b − 1, then a
base b construction shows the bound of

∏
(b − 1 + 1) = bt is “tight” (if we remove the restriction that the

mk must be coprime).

However, Solutions 2 and 3 “ignore” the additive structure of CRT solution sets encapsulated in Solution
1’s Lagrange interpolation representation.
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N6* Number Theory – Solutions ELMO 2013

N6*
Find all positive integers m for which there exists a function f : Z+ → Z+ such that

ff
f(n)(n)(n) = n

for every positive integer n, and f2013(m) 6= m. Here fk(n) denotes f(f(· · · f︸ ︷︷ ︸
k f ’s

(n) · · · )).

Evan Chen

Answer. All m not dividing 2013; that is, Z+ \ {1, 3, 11, 33, 61, 183, 671, 2013}.
Solution. First, it is easy to see that f is both surjective and injective, so f is a permutation of the positive
integers. We claim that the functions f which satisfy the property are precisely those functions which satisfy
fn(n) = n for every n.

For each integer n, let ord(n) denote the smallest integer k such that fk(n). These orders exist since

ff
f(n)(n)(n) = n, so ord(n) ≤ ff(n)(n); in fact we actually have

ord(n) | ff(n)(n) (8.1)

as a consequence of the division algorithm.

Since f is a permutation, it is immediate that ord(n) = ord(f(n)) for every n; this implies easily that
ord(n) = ord

(
fk(n)

)
for every integer k. In particular, ord(n) = ord

(
ff(n)−1(n)

)
. But then, applying (8.1)

to ff(n)−1(n) gives

ord(n) = ord
(
ff(n)−1(n)

)
| ff(f

f(n)−1(n))
(
ff(n)−1(n)

)
= ff

f(n)(n)+f(n)−1(n)

= ff(n)−1
(
ff

f(n)(n)(n)
)

= ff(n)−1(n)

Inductively, then, we are able to show that ord(n) | ff(n)−k(n) for every integer k; in particular, ord(n) | n,
so fn(n) = n. To see that this is actually sufficient, simply note that ord(n) = ord(f(n)) = · · · , which
implies that ord(n) | fk(n) for every k.

In particular, if m | 2013, then ord(m) | m | 2013 and f2013(m) = m. The construction for the other values
of m is left as an easy exercise. �

This problem and solution were proposed by Evan Chen.

Remark. There are many ways to express the same ideas.

For instance, the following approach (“unraveling indices”) also works: It’s not hard to show that f is a
bijection with finite cycles (when viewed as a permutation). If C = (n0, n1, . . . , n`−1) is one such cycle with

f(ni) = ni+1 for all i (extending indices mod `), then ff
f(n)(n)(n) = n holds on C iff ` | ff(ni)(ni) = ni+ni+1

for all i. But ` | nj =⇒ ` | nj−1+nj = nj−1 for fixed j, so the latter condition holds iff ` | ni for all i. Thus
f2013(n) = n is forced unlesss n - 2013.
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N7*

Let p be a prime satisfying p2 | 2p−1 − 1, n be a positive integer, and f(x) = (x−1)p
n
−(xp

n
−1)

p(x−1) . Find

the largest positive integer N such that there exist polynomials g, h ∈ Z[x] and an integer r satisfying
f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

Answer. The largest possible N is 2pn−1.

Solution 1. Let F (x) = x
1 + · · ·+ xp−1

p−1 .

By standard methods we can show that (x − 1)p
n − (xp

n−1 − 1)p has all coefficients divisible by p2. But
p2 | 2p−1 − 1 means p is odd, so working in Fp, we have

(x− 1)f(x) =

p−1∑
k=1

1

p

(
p

k

)
(−1)k−1xp

n−1k =

p−1∑
k=1

(
p− 1

k − 1

)
(−1)k−1

xp
n−1k

k

=

p−1∑
k=1

xp
n−1k

kpn−1 = F (x)p
n−1

,

where we use Fermat’s little theorem,
(
p−1
k−1
)
≡ (−1)k−1 (mod p) for k = 1, 2, . . . , p− 1, and the well-known

fact that P (xp)− P (x)p has all coefficients divisible by p for any polynomial P with integer coefficients.

However, it is easy to verify that p2 | 2p−1 − 1 if and only if p | F (−1), i.e. −1 is a root of F in Fp.
Furthermore, F ′(x) = xp−1−1

x−1 = (x+ 1)(x+ 2) · · · (x+ p− 2) in Fp, so −1 is a root of F with multiplicity 2;

hence N ≥ 2pn−1. On the other hand, since F ′ has no double roots, F has no integer roots with multiplicity
greater than 2. In particular, N ≤ 2pn−1 (note that the multiplicity of 1 is in fact pn−1 − 1, since F (1) = 0
by Wolstenholme’s theorem but 1 is not a root of F ′). �

This problem and solution were proposed by Victor Wang.

Remark. The rth derivative of a polynomial P evaluated at 1 is simply the coefficient [(x− 1)r]P (i.e. the
coefficient of (x− 1)r when P is written as a polynomial in x− 1) divided by r!.

Solution 2. This is asking to find the greatest multiplicity of an integer root of f modulo p; I claim the
answer is 2pn−1.

First, we shift x by 1 and take the negative (since this doesn’t change the greatest multiplicity) for conve-

nience, redefining f as f(x) = (x+1)p
n
−xp

n
−1

px .

Now, we expand this. We can show, by writing out and cancelling, that p1 fully divides
(
pn

k

)
only when pn−1

divides k; thus, we can ignore all terms except the ones with degree divisible by pn−1 (since they still go

away when taking it mod p), leaving f(x) = 1
px (
(
pn

pn−1

)
xp

n−pn−1

+ · · ·+
(

pn

pn−pn−1

)
xp

n−1

).

We can also show, by writing out/cancelling, that 1
p

(
pn

kpn−1

)
= 1

p

(
p
k

)
modulo p. Simplifying using this, the

expression above becomes f(x) = 1
px (
(
p
1

)
xp

n−pn−1

+ · · ·+
(
p
p−1
)
xp

n−1

) = 1
px ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Now, we ignore the 1/x for the moment (all it does is reduce the multiplicity of the root at x = 0 by 1) and

just look at the rest, P (x) = 1
p ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Substituting y = xp
n−1

, this becomes 1
p ((y + 1)p − (yp + 1)); since 1

p

(
p
k

)
= 1

k

(
p−1
k−1
)
, this is equal to P (x) =

1
1

(
p−1
0

)
yp−1 + · · ·+ 1

p−1
(
p−1
p−2
)
y. (We work mod p now; the ps can be cancelled before modding out.)

We now show that P (x) has no integer roots of multiplicity greater than 2, by considering the root multi-
plicities of y times its reversal, or Q(x) = 1

p−1
(
p−1
p−2
)
yp−1 + · · ·+ 1

1

(
p−1
0

)
y.

Note that some polynomial P has a root of multiplicity m at x iff P and its first m − 1 derivatives all
have zeroes at x. (We’re using the formal derivatives here - we can prove this algebraically over Z mod p, if
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m < p.) The derivative of Q is
(
p−1
p−2
)
yp−2+ · · ·+

(
p−1
0

)
, or (y+1)p−1−yp−1, which has as a root every residue

except 0 and −1 by Fermat’s little theorem; the second derivative is a constant multiple of (y+1)p−2−yp−2,
which has no integer roots by Fermat’s little theorem and unique inverses. Therefore, no integer root of Q
has multiplicity greater than 2; we know that the factorization of a polynomial’s reverse is just the reverse of
its factorization, and integers have inverses mod p, so P (x) doesn’t have integer roots of multiplicity greater
than 2 either.

Factoring P (x) completely in y (over some extension of Fp), we know that two distinct factors can’t share a
root; thus, at most 2 factors have any given integer root, and since their degrees (in x) are each pn−1, this
means no integer root has multiplicity greater than 2pn−1.

However, we see that y = 1 is a double root of P . This is because plugging in gives P (1) = 1
p ((1 + 1)p −

(1p + 1)) = 1
p (2p − 2); by the condition, p2 divides 2p − 2, so this is zero mod p. Since 1 is its own inverse,

it’s a root of Q as well, and it’s a root of Q’s derivative so it’s a double root (so (y − 1)2 is part of Q’s
factorization). Reversing, (y − 1)2 is part of P ’s factorization as well.

Applying a well-known fact, y − 1 = xp
n−1 − 1 = (x− 1)p

n−1

modulo p, so 1 is a root of P with multiplicity
2pn−1.

Since adding back in the factor of 1/x doesn’t change this multiplicity, our answer is therefore 2pn−1. �

This second solution was suggested by Alex Smith.
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N8
We define the Fibonacci sequence {Fn}n≥0 by F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2; we
define the Stirling number of the second kind S(n, k) as the number of ways to partition a set of n ≥ 1
distinguishable elements into k ≥ 1 indistinguishable nonempty subsets.

For every positive integer n, let tn =
∑n
k=1 S(n, k)Fk. Let p ≥ 7 be a prime. Prove that

tn+p2p−1 ≡ tn (mod p)

for all n ≥ 1.

Victor Wang

Solution. Let α = 1+
√
5

2 and β = 1−
√
5

2 . By convention we extend the definition to all n, k ≥ 0 so that
S(0, 0) = 1 and for m > 0, S(m, 0) = S(0,m) = 0. It will also be convenient to define the falling factorial
(x)n = x(x− 1) · · · (x− n+ 1), where we take (x)0 = 1. Then we can extend our sequence to t0 by defining
tn =

∑n
k=0 S(n, k)Fk instead (the k = 0 term vanishes for positive n).

A simple combinatorial interpretation yields the polynomial identity
∑n
k=0 S(n, k)(x)k = xn (it is enough

to establish the result just for positive integer x). Inspired by the methods of umbral calculus (we try to

“exchange” (x)k, x
n with Fk, tn), we consider the linear map T : Z[x]→ Z satisfying T ((x)k) = Fk = αk−βk

α−β .

Because the (x)k (for k ≥ 0) form a basis of Z[x] (the standard one is {xk}k≥0), this uniquely determines
such a map, and tn = T (xn). Hence if ` = p2p − 1, we need to show that p | T (xn(1− x`)) for all n ≥ 0, or
equivalently, that p | T ((x` − 1)f(x)) for all f ∈ Z[x].

Throughout this solution we will work in Fp and use the fact that P (xp)−P (x)p has all coefficients divisible by
p for any P ∈ Z[x]. It is well-known (e.g. by Binet’s formula) that p | Fn+p2−1−Fn for all n ≥ 0 since p 6= 2, 5.
But by a simple induction on n ≥ 0 we find that T ((x)nf(x)) = Fn−1T (f(x+ n)) + FnT (xf(x+ n− 1)) for

all f ∈ Z[x], so taking n = p(p2− 1) yields T ((xp− x)p
2−1f(x)) = F−1T (f(x)) +F0T (xf(x− 1)) = T (f(x)),

where we use the fact that x(x− 1) · · · (x− p+ 1) = xp − x, F−1 = F1 − F0 = 1, and F0 = 0.

Since T ([(xp − x)p
2−1 − 1]f(x)) = 0, it suffices to show that (xp − x)p

2−1 − 1 | xp2p−1 − 1 (still in Fp, of

course). It will be convenient to work modulo (xp − x)p
2−1 − 1. First note that

(xp − x)p
2−1 − 1 | (xp − x)p

2

− (xp − x) = xp
3

− xp
2

− xp + x

| (xp
3

− xp
2

− xp + x)p + (xp
3

− xp
2

− xp + x) = xp
4

− 2xp
2

+ x,

so it’s enough to prove that xp
4−2xp

2

+x | xp2p−x (since gcd(x, (xp−x)p
2−1−1) = 1). But (xp

4−2xp
2

+x)p
2−

(xp
4−2xp

2

+x) = xp
6−3xp

4

+3xp
2−x; by a simple induction, we have xp

4−2xp
2

+x |
∑m
k=0(−1)k

(
m
k

)
xp

2m−2k

for m ≥ 2; for m = p we obtain xp
4 − 2xp

2

+ x | xp2p − x, as desired. �

This problem and solution were proposed by Victor Wang.

Remark. This is based off of the classical Bell number congruence Bn+ pp−1
p−1

≡ Bn (mod p), where Bn =∑n
k=0 S(n, k) is the number of ways to partition a set of n distinguishable elements into indistinguishable

nonempty sets (we take S(0, 0) = 1 and for m > 0, S(m, 0) = S(0,m) = 0, to deal with zero indices). We
can replace {Fn}n≥0 with any recurrence {an} satisfying an = an−1 +an−2, but Fibonacci numbers will still
appear in the main part of the solution. There is a similar solution working in Fp2 (using Binet’s formula
more directly); we encourage the reader to find it. There is also an instructive solution using the generating

function
∑
n≥0 a

kS(n, k)xn = (ax)k

(1−x)(1−2x)···(1−kx) (which holds for all k ≥ 0, and has a simple combinatorial

interpretation) for a = α, β and working in Fp2 again; we also encourage the reader to explore this line of
attack and realize its connections to umbral calculus.
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Ego Loss May Occur

16th ELMO
Lincoln, Nebraska

Year: 2014

Day: 1

Sunday, June 15, 2014
8:00 AM - 12:30 PM

Problem 1. Find all triples (f, g, h) of injective functions from the set of real numbers to
itself satisfying

f(x + f(y)) = g(x) + h(y)

g(x + g(y)) = h(x) + f(y)

h(x + h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any
distinct real numbers a and b.)

Problem 2. Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6}
and n is a positive integer. Prove that each integer greater than 2 can be expressed as the
sum of pairwise distinct beautiful numbers.

Problem 3. We say a finite set S of points in the plane is very if for every point X in S,
there exists an inversion with center X mapping every point in S other than X to another
point in S (possibly the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique
very set S of size n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the
point P ′ along ray OP such that OP ·OP ′ = r2.)

Time limit: 4 hours and 30 minutes.
Each problem is worth 7 points.



Ego Loss May Occur

16th ELMO
Lincoln, Nebraska

Year: 2014

Day: 2

Saturday, June 21, 2014
8:00 AM - 12:30 PM

Problem 4. Let n be a positive integer and let a1, a2, . . . , an be real numbers strictly
between 0 and 1. For any subset S of {1, 2, . . . , n}, define

f(S) =
∏
i∈S

ai ·
∏
j 6∈S

(1− aj).

Suppose that
∑

|S| odd f(S) = 1
2 . Prove that ak = 1

2 for some k. (Here the sum ranges over
all subsets of {1, 2, . . . , n} with an odd number of elements.)

Problem 5. Let ABC be a triangle with circumcenter O and orthocenter H. Let ω1 and ω2

denote the circumcircles of triangles BOC and BHC, respectively. Suppose the circle with
diameter AO intersects ω1 again at M , and line AM intersects ω1 again at X. Similarly,
suppose the circle with diameter AH intersects ω2 again at N , and line AN intersects ω2

again at Y . Prove that lines MN and XY are parallel.

Problem 6. A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black
squares form one or more snakes on the plane, each of whose heads splits at some points
but never comes back together. In other words, for every positive integer n greater than 2,
there do not exist pairwise distinct black squares s1, s2, . . . , sn such that si and si+1 share
an edge for i = 1, 2, . . . , n (here sn+1 = s1).

What is the maximum possible number of filled black squares?

Time limit: 4 hours and 30 minutes.
Each problem is worth 7 points.



16th Ego Loss May Occur

ELMO 2014

Lincoln, Nebraska

OFFICIAL SOLUTIONS

1. Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct
real numbers a and b.)

Proposed by Evan Chen.

Answer. For all real numbers x, f(x) = g(x) = h(x) = x + C, where C is an arbitrary real
number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0,
we can get that f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y−f(y)−(b+2c) is constant, so that y−f(y) is constant.
Thus, f is linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get
2a = b+ c, 2b = c+ a and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real. One
can easily verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. Although it may look intimidating, this is not a very hard problem. The basic idea
is to view f(0), g(0) and h(0) as constants, and write the first equation entirely in terms of
f(x), much like we would attempt to eliminate variables in a standard system of equations.
At this point we still had two degrees of freedom, x and y, so it seems likely that the result
would be easy to solve. Indeed, we simply select x in such a way that two of the terms cancel,
and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives
g(f(a)) + h(b) = g(f(b)) + h(a) =⇒ g(f(a))− h(a) = g(f(b))− h(b). So g(f(x)) = h(x) + a1
for a constant a1. Similarly, h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.

1



Now, we will show that h(h(x))− f(x) and h(h(x))− g(x) are both constant. For the second,
just plug in x = 0 to the third equation. For the first, let x = a3, y = k in the original to get
g(f(h(k))) = h(a3) + f(k). But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is
constant as desired.

Now f(x) − g(x) is constant, and by symmetry g(x) − h(x) is also constant. Now let g(x) =
f(x) + p, h(x) = f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q

Now plugging in (x, y) and (y, x) into the first one gives f(x + f(y)) = f(y + f(x)) =⇒
f(x)−x = f(y)−y from injectivity, f(x) = x+c. Plugging this in gives 2p = q, 2q = p, p+q = 0
so p = q = 0 and f(x) = x+c, g(x) = x+c, h(x) = x+c for a constant c are the only solutions.
�

This second solution was suggested by David Stoner.

Solution 3. By putting (x, y) = (0, a) we derive that f(f(a)) = g(0) + h(a) for each a, and
the analogous counterparts for g and h. Thus we can derive from (x, y) = (t, g(t)) that

h(f(t) + h(g(t))) = f(f(t)) + g(g(t))

= g(0) + h(t) + h(0) + f(t)

= f(f(0)) + g(t+ g(t))

= h(f(0) + h(t+ g(t)))

holds for all t. Thus by injectivity of h we derive that

f(x) + h(g(x)) = f(0) + h(x+ g(x)) (∗)

holds for every x.

Now observe that placing (x, y) = (g(a), a) gives

g(2g(a)) = g(g(a) + g(a)) = h(g(a)) + f(a)

while placing (x, y) = (g(a) + a, 0) gives

g(g(a) + a+ g(0)) = h(a+ g(a)) + f(0).

Equating this via (∗) and applying injectivity of g again, we find that

2g(a) = g(a) + a+ g(0)

for each a, whence g(x) = x+ b for some real number b. We can now proceed as in the earlier
solutions. �

This third solution was suggested by Mehtaab Sawhney.

Solution 4. In the first given, let x = a+ g(0) and y = b to obtain

f(a+ g(0) + f(b)) = g(a+ g(0)) + h(b) = h(a) + h(b) + f(0).

Swapping the roles of a and b, we discover that

f(b+ g(0) + f(a)) = f(a+ g(0) + f(b)).

But f is injective; this implies f(x)− x is constant, and we can the proceed as in the previous
solutions. �

This fourth solution was suggested by alibez.
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2. Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a
positive integer. Prove that each integer greater than 2 can be expressed as the sum of pairwise
distinct beautiful numbers.

Proposed by Matthew Babbitt.

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 +
· · ·+ an. Then for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show
that a0 − (a1 + · · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong
induction on N . The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one
of the inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with
3 ≤ N ′ < N and then apply the inductive hypothesis; the construction for N ′ cannot use any
of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely
natural, it is not immediately obvious that one should consider 3 ≤ N−(x1+ · · ·+xk) < xk+3
rather than the stronger bound 3 ≤ N−(x1+· · ·+xk) < xk. In particular, the solution method
above does not work if one attempts to get the latter.

3. We say a finite set S of points in the plane is very if for every point X in S, there exists an
inversion with center X mapping every point in S other than X to another point in S (possibly
the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very
set S of size n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point
P ′ along ray OP such that OP ·OP ′ = r2.)

Proposed by Sammy Luo.

Answer. For part (b), the maximal size is 5.
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Solution. For part (a), take a regular (n+1)-gon and number the vertices Ai (i = 0, 1, 2, . . . , n)
Now invert the polygon with center A0 with arbitrary power. This gives a very set of size n.
(This can be easy checked with angle chase, PoP, etc.) By scaling and translation, this shows
the existence of a very set as in part (a).

It remains to prove uniqueness. Suppose pointsA = P1, P2, . . . , Pn = B andA = X1, X2, . . . , Xn =
B are two very sets on AB in that order. Assume without loss of generality that X1X2 > P1P2.
Then X2X

2
1 = X2X3 · (X1Xn −X1X2) =⇒ X2X3 > P2P3. Proceeding inductively, we find

XkXk+1 > PkPk+1 for k = 1, 2, . . . , n− 1. Thus, X1Xn > P1Pn, which is a contradiction.

For (b), let P (A) (let’s call this power, A is a point in space) be a function returning the
radius of inversion with center A. Note that the power of endpoints of 1D very sets are equal,
and these powers are the highest out of all points in the very set. Let the convex hull of our
very set be H. Let the vertices be A1, A2, ..., Am. (We have m ≥ 3 since the points are not
collinear.) Since A1, A2 are endpoints of a 1D very set, they have equal power. Going around
the hull, all vertices have equal power.

Lemma 2. Other than the vertices, no other points lie on the edges of H, and H is equilateral.

Proof. Say X is on A1A2. Then X,A3 are on opposite ends of a 1D very set, so they have
equal power. Then P (X) = P (A1) = P (A2) contradicting the fact the endpoints have the
unique highest power. Therefore, since all sides only have 2 points on them, and all vertices
have equal power, all sides are equal.

Lemma 3. H is a regular polygon.

Proof. Let’s look at the segment A1A3. Say that on it we have a very set of size k − 1. By
uniqueness and the construction in (a), and the fact that P (A1) = P (A2) = P (A3), we get
that A1, A2, A3 are 3 vertices of a regular k-gon. Now the very set on segment A1A3 under
inversion at A2 would map to a regular k-gon. So all vertices of this regular k-gon would be
in our set. Assuming that not all angles are equal taking the largest angle who is adjacent to
a smaller angle, we contradict convexity. So all angles are equal. Combining this with Lemma
1, H is a regular polygon.

Lemma 4. H cannot have more than 4 vertices.

Proof. Firstly, note that no points can be strictly any of the triangles AiAi+1Ai+2. (*) Or
else, inverting with center Ai+1 we get a point outside H. First, let’s do if m (number of
vertices) is odd. Let m = 2k+1. (k ≥ 2) Look at the inversive image of A2k+1 under inversion
with center A2. Say it maps to X. Note that P (X) < P (Ai) for any i. Now look at the line
Ak+2X. Since Ak+2 is an endpoint, but P (X) < P (Ak+2), the other endpoint of this 1D very
set must be on ray Ak+2X past X, contradicting (*), since no other vertices of H are on this
ray. Similarly for m even and ≥ 6 we can also find 2 points like these who contain no other
vertices in H on the line through them.

Lemma 5. We only have 2 distinct very sets in 2D (up to scaling), an equilateral triangle
(when n = 3) and a square with its center (when n = 5).

Proof. First if H has 3 points, then by (*) in Lemma 3, no other points can lie inside H. So
we get an equilateral triangle. If H has 4 points, then by (*) in Lemma 3, the only other point
that we can add into our set is the center of the square. This also must be added, and this
gives a very set of size 5.

Hence, the maximal size is 5. �

This problem was proposed by Sammy Luo. This solution was given by Yang Liu.
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4. Let n be a positive integer and let a1, a2, . . . , an be real numbers strictly between 0 and 1.
For any subset S of {1, 2, . . . , n}, define

f(S) =
∏
i∈S

ai ·
∏
j 6∈S

(1− aj).

Suppose that
∑
|S| odd f(S) = 1

2 . Prove that ak = 1
2 for some k. (Here the sum ranges over all

subsets of {1, 2, . . . , n} with an odd number of elements.)

Proposed by Kevin Sun.

Solution. Let X =
∑
|S| odd f(S). Consider n unfair coins which shows heads with probabil-

ities a1, a2, . . . , an. Observe that X computes the probability that an odd number of heads
is obtained. Thus, it is clear that if ak = 1

2 for some k, then X = 1
2 .

Consequently X − 1
2 is divisible by the polynomial

∏n
i=1

(
ai − 1

2

)
. Since both are degree n,

they must be equal up to scaling. Thus the conclusion follows. �

This problem and solution were proposed by Kevin Sun.

5. Let ABC be a triangle with circumcenter O and orthocenter H. Let ω1 and ω2 denote the
circumcircles of triangles BOC and BHC, respectively. Suppose the circle with diameter AO
intersects ω1 again at M , and line AM intersects ω1 again at X. Similarly, suppose the circle
with diameter AH intersects ω2 again at N , and line AN intersects ω2 again at Y . Prove that
lines MN and XY are parallel.

Proposed by Sammy Luo.

Remark. Originally, the problem was phrased with respect to arbitrary isogonal conjugates
in place of O and H. The modified version admits additional properties. In this version, X is
the intersection of the tangents at B and C, while Y is the reflection of A across the midpoint
of BC.

Solution 1.

Since ∠PMX = ∠QNY = π
2 , we derive

∠PBX = ∠QBY = ∠PCX = ∠QCY =
π

2
.

Thus
∠ABY =

π

2
+ ∠ABQ = ∠PBC +

π

2
= π − ∠CBX,

so X and Y are isogonal with respect to ∠B. However, similar angle chasing gives that they
are isogonal with respect to ∠C. Thus they are isogonal conjugates with respect to ABC. (In
particular, ∠BAY = ∠XAC.)

Also, ∠ABY = π − ∠CBX = π − ∠CMX = ∠AMC; hence 4ABY ∼ 4AMC. Similarly,
4ABN ∼ 4AXC. Thus AN

AB = AC
AX , and AB

AY = AM
AC . Multiplying, we get that AN

AY = AM
AX

which implies the conclusion. �

This first solution was suggested by Kevin Sun.

Remark. The points M and N are also isogonal conjugates.

Solution 2. We apply barycentric coordinates with respect to triangle ABC (and as usual
we apply Conway’s Notation). Remark that the circle with diameter AO is the circumcircle
of A = (1, 0, 0) and the midpoints MB = (1 : 0 : 1) and MC = (1 : 1 : 0). Similarly,
the circle with diameter AH is the circumcircle of A = (1, 0, 0) and the feet of the altitudes
KB = (SC : 0 : SA) and KC = (SB : SA : 0). It is then straightforward to derive the following
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A

B C

O

H

M

N

X

Y

equations (using the standard formulas 2(SAB + SBC + SCA) = a2SA + b2SB + c2SC = 16K2,
where K is the area of ABC.)

(AMBMC) : a2yz + bzx+ c2xy = (x+ y + z)

(
1

2
c2y +

1

2
b2z

)
(AKBKC) : a2yz + bzx+ c2xy = (x+ y + z)

(
SBc

2y + SCz
)

(BOC) : a2yz + bzx+ c2xy = (x+ y + z)

(
b2c2

2SA
x

)
(BHC) : a2yz + bzx+ c2xy = (x+ y + z) (2Sax)

It is now straightforward to check M = (2SA : b2 : c2) and N = (a2 : 2SA : 2SA) are
the coordinates of M and N (by checking that they lie on the respective required circles).
Therefore AM is a symmedian, whence it is clear that the intersection of the two tangents
X = (−a2 : b2 : c2) is the correct form for X (one can also verify directly that this lies on
(BOC)). Analogously we find Y = (−1 : 1 : 1) follows from AN being a median (and again
this can also be verified using coordinates only).

It remains to prove that MN and XY are parallel. By normalizing and comparing the x-
coordinates, we find that

AM

AX
=

1− 2SA

2SA+b2+c2

1− −a2
−a2+b2+c2

=
−a2 + b2 + c2

−a2 + 2b2 + 2c2

and

AN

NX
=

1− a2

a2+4SA

1− (−1)
=

2SA
a2 + 4SA

=
−a2 + b2 + c2

−a2 + 2b2 + 2c2

and we are done. �

This second solution was suggested by Sam Korsky.

6



Remark. This solution is clearly back-constructed. If the points (and hence coordinates of) X
and Y are predicted from a well-drawn diagram, then one can use single linear computations to
obtain the points M and N (as opposed to quadratics). Simply parametrize M as (t : b2 : c2)
and then consider the radical axis of (AOM) and (BOC), obtained by merely subtracting the
two circle’s equations.

Solution 3. First, remark that OX is a diameter of (BOC), meaning X is the intersection
of the tangents to (ABC) at B and C. In particular AX is a symmedian. Next, notice that
HY is a diameter of (BHC), meaning Y is the reflection of A over the midpoint of BC. In
particular AX is a median.

Now we claim that (AMB) and (AMC) are tangent to AC and AB, respectively. This follows
from angle chasing via

∠ABM = ∠B − ∠MBC = ∠B − ∠MXC = · · · = ∠MAC.

Similarly, we claim that (ANB) and (ANC) are both tangent to BC. This just follows from

∠BAN = ∠NY C = ∠NBC.

Now invert at A with radius
√
AB ·AC and then reflect around the angle bisector of A. This

map sends B to C. Using the tangencies above, we see that M is mapped to Y and N is
mapped to X, so AM ·AX = AN ·AY = AB ·AC and the conclusion follows. �

This third solution was suggested by Michael Ren.

This problem was proposed by Sammy Luo.

6. A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one
or more snakes on the plane, each of whose heads splits at some points but never comes back
together. In other words, for every positive integer n greater than 2, there do not exist pairwise
distinct black squares s1, s2, . . . , sn such that si and si+1 share an edge for i = 1, 2, . . . , n
(here sn+1 = s1).

What is the maximum possible number of filled black squares?

Proposed by David Yang.

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n + 1) − 1. In this

particular instance, m = 2014 and n = 22014 + 1.

Solution 1. Let n = 2m+1. Double-counting square edges yields 3v+1 ≤ 4v−e ≤ 2n(n+1),
so because n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved
iff (a) the graph formed by black squares is a connected forest (i.e. a tree) and (b) all but two
square edges belong to at least one black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an
“H-shape” (so if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is
black); call this G1. To go from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in
Gm, and fill in (x, y) with x, y not both even iff x + y is odd (so iff one of x, y is odd and
the other is even). Each “newly-created” white square has both coordinates odd, and thus
borders 4 (newly-created) black squares. In particular, there are no new white squares on the
border (we only have the original two from G1). Furthermore, no two white squares share an
edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b).
To check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff
(x1, y1) and (x2, y2) are black squares (and thus connected) in Gm (the new black squares are
essentially just “bridges”). Indeed, every path in Gm+1 alternates between coordinates with
odd and even sum, or equivalently, new and old black squares. But two black squares (x1, y1)
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and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2) is black and adjacent to (2x1, 2y1) and
(2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is clear: the set of old black
squares must remain connected in Gm+1, and all new black squares (including those on the
boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a
cycle in Gm by removing the new black squares from a cycle in Gm+1 (as every other square
in a cycle would have to have odd coordinate sum). �

This problem and solution were proposed by David Yang.

Solution 2. As above, we can show that there are at most 2
3n(n+ 1)− 1 black squares. We

provide a different construction now for n = 2k + 1.

Consider the grid as a coordinate plane (x, y) where 0 ≤ x, y ≤ 2m. Color white the any square
(x, y) for which there exists a positive integer k with x ≡ y ≡ 2k−1 (mod 2)k. Then, color
white the square (0, 0). Color the remaining squares black. Some calculations show that this
is a valid construction which achieves 2

3n(n+ 1)− 1. �

This second solution was suggested by Kevin Sun.

Solution 3. We can achieve the bound of 2
3n(n + 1) − 1 as above. We will now give a

construction which works for all n = 6k + 5. Let M = 3k + 2.

Consider the board as points (x, y) where −M ≤ x, y ≤ M . Paint white the following types
of squares:

• The origin (0, 0) and the corner (M,M).

• Squares of the form (±a, 0) and (0,±a), where a 6≡ 1 (mod 3) and 0 < a < M .

• Any square (±x,±y) such that y − x ≡ 0 (mod 3) and 0 < x, y < M .

Paint black the remaining squares. This yields the desired construction. �

This third solution was suggested by Ashwin Sah.

8



Ego Loss May Occur

June 2014

Lincoln, Nebraska

Problem Shortlist
Created and Managed by Evan Chen



ELMO regulation:
The problems must be kept strictly con-
fidential until disclosed publicly by the
ELMO Committee.

The ELMO 2014 committee gratefully acknowledges the
receipt of 43 problems from the following 16 authors:

Ryan Alweiss 3 problems
Matthew Babbitt 1 problem
Evan Chen 3 problems
AJ Dennis 1 problem
Shashwat Kishore 1 problem
Michael Kural 1 problem
Allen Liu 2 problems
Yang Liu 7 problems
Sammy Luo 12 problems
Robin Park 4 problems
Bobby Shen 1 problem
David Stoner 3 problems
Kevin Sun 1 problem
Victor Wang 1 problem
David Yang 1 problem
Jesse Zhang 1 problem

This list was last updated on June 30, 2014.

2



Contents Problem Shortlist ELMO 2014

I Problems 6

1 Algebra 7

1.1 Problem A1, by Ryan Alweiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Problem A2, by AJ Dennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Problem A3, by Allen Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Problem A4, by Evan Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Problem A5, by Ryan Alweiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Problem A6, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Problem A7, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Problem A8, by David Stoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.9 Problem A9, by Robin Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Combinatorics 9

2.1 Problem C1, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Problem C2, by David Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Problem C3, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Problem C4, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Problem C5, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Problem C6, by Bobby Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Geometry 11

3.1 Problem G1, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Problem G2, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Problem G3, by Robin Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Problem G4, by Robin Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Problem G5, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Problem G6, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Problem G7, by Robin Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.8 Problem G8, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.9 Problem G9, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.10 Problem G10, by Sammy Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.11 Problem G11, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.12 Problem G12, by David Stoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.13 Problem G13, by David Stoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Number Theory 14

4.1 Problem N1, by Jesse Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Problem N2, by Ryan Alweiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Problem N3, by Michael Kural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Problem N4, by Evan Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Problem N5, by Matthew Babbitt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.6 Problem N6, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3



Contents Problem Shortlist ELMO 2014

4.7 Problem N7, by Evan Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.8 Problem N8, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.9 Problem N9, by Shashwat Kishore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.10 Problem N10, by Yang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.11 Problem N11, by Victor Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II Solutions 17

5 Algebra 18

5.1 Solution to A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Solution to A3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Solution to A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Solution to A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Solution to A7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.6 Solution to A8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.7 Solution to A9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Combinatorics 27

6.1 Solution to C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Solution to C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Solution to C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Solution to C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.5 Solution to C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Geometry 36

7.1 Solution to G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Solution to G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3 Solution to G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4 Solution to G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.5 Solution to G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.6 Solution to G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.7 Solution to G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.8 Solution to G8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.9 Solution to G9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.10 Solution to G10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.11 Solution to G11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.12 Solution to G12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.13 Solution to G13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Number Theory 50

8.1 Solution to N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2 Solution to N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4



Contents Problem Shortlist ELMO 2014

8.3 Solution to N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.4 Solution to N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.5 Solution to N5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.6 Solution to N6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.7 Solution to N7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.8 Solution to N8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.9 Solution to N11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



Part I

Problems

6



Algebra Problem Shortlist ELMO 2014

Algebra

A1
A1

In a non-obtuse triangle ABC, prove that

sinA sinB

sinC
+

sinB sinC

sinA
+

sinC sinA

sinB
≥ 5

2
.

Ryan Alweiss

A2
A2

Given positive reals a, b, c, p, q satisfying abc = 1 and p ≥ q, prove that

p
(
a2 + b2 + c2

)
+ q

(
1

a
+

1

b
+

1

c

)
≥ (p+ q)(a+ b+ c).

AJ Dennis

A3
A3

Let a, b, c, d, e, f be positive real numbers. Given that def + de+ ef + fd = 4, show that

((a+ b)de+ (b+ c)ef + (c+ a)fd)2 ≥ 12(abde+ bcef + cafd).

Allen Liu

A4
A4

Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct real numbers
a and b.)

Evan Chen
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A5
A5

Let R∗ denote the set of nonzero reals. Find all functions f : R∗ → R∗ satisfying

f(x2 + y) + 1 = f(x2 + 1) +
f(xy)

f(x)

for all x, y ∈ R∗ with x2 + y 6= 0.

Ryan Alweiss

A6
A6

Let a, b, c be positive reals such that a+ b+ c = ab+ bc+ ca. Prove that

(a+ b)ab−bc(b+ c)bc−ca(c+ a)ca−ab ≥ acababcbc.

Sammy Luo

A7
A7

Find all positive integers n with n ≥ 2 such that the polynomial

P (a1, a2, . . . , an) = an1 + an2 + . . .+ ann − na1a2 . . . an

in the n variables a1, a2, . . . , an is irreducible over the real numbers, i.e. it cannot be factored as the product
of two nonconstant polynomials with real coefficients.

Yang Liu

A8
A8

Let a, b, c be positive reals with a2014 + b2014 + c2014 + abc = 4. Prove that

a2013 + b2013 − c
c2013

+
b2013 + c2013 − a

a2013
+
c2013 + a2013 − b

b2013
≥ a2012 + b2012 + c2012.

David Stoner

A9
A9

Let a, b, c be positive reals. Prove that√
a2(bc+ a2)

b2 + c2
+

√
b2(ca+ b2)

c2 + a2
+

√
c2(ab+ c2)

a2 + b2
≥ a+ b+ c.

Robin Park
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Combinatorics

C1
C1

You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the
following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.

2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead
ends up.

3. Do either of the above, switching the roles of the words “magenta” and “left” with those of “yellow”
and “right”, respectively.

4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, ap-
pearing somewhere in the circle, and swap the orders of each pair.

5. Remove four consecutive beads of one color.

Starting with the circle: “yellow, yellow, magenta, magenta, cyan, cyan, cyan”, determine whether or not
you can reach a) “yellow, magenta, yellow, magenta, cyan, cyan, cyan”, b) “cyan, yellow, cyan, magenta,
cyan”, c) “magenta, magenta, cyan, cyan, cyan”, d) “yellow, cyan, cyan, cyan”.

Sammy Luo

C2
C2

A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words, for
every positive integer n greater than 2, there do not exist pairwise distinct black squares s1, s2, . . . , sn such
that si and si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1).

What is the maximum possible number of filled black squares?

David Yang

C3
C3

We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with
center X mapping every point in S other than X to another point in S (possibly the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very set S of size
n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point P ′ along ray
OP such that OP ·OP ′ = r2.)

Sammy Luo
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C4
C4

Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red
and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red
block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every
b years,

(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever
fall at exactly the same time. Consider a period of rb years in which the column is initially empty.
Determine, in terms of r and b, the number of blocks in the column at the end.

(b) Now suppose r and b are relatively prime and r + b is odd. At time t = 0, the column is initially
empty. Suppose a red block falls at times t = r, 2r, . . . , (b − 1)r years, while a blue block falls at
times t = b, 2b, . . . , (r − 1)b years. Prove that at time t = rb, the number of blocks in the column is
|1 + 2(r − 1)(b+ r)− 8S|, where

S =

⌊
2r

r + b

⌋
+

⌊
4r

r + b

⌋
+ . . .+

⌊
(r + b− 1)r

r + b

⌋
.

Sammy Luo

C5
C5

Let n be a positive integer. For any k, denote by ak the number of permutations of {1, 2, . . . , n} with
exactly k disjoint cycles. (For example, if n = 3 then a2 = 3 since (1)(23), (2)(31), (3)(12) are the only such
permutations.) Evaluate

ann
n + an−1n

n−1 + · · ·+ a1n.

Sammy Luo

C6
C6

Let f0 be the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each positive
integer m, let fm(x, y) be the remainder when

fm−1(x, y) +

1∑
j=−1

1∑
k=−1

fm−1(x+ j, y + k)

is divided by 2. Finally, for each nonnegative integer n, let an denote the number of pairs (x, y) such that
fn(x, y) = 1. Find a closed form for an.

Bobby Shen
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Geometry

G1
G1

Let ABC be a triangle with symmedian point K. Select a point A1 on line BC such that the lines AB, AC,
A1K and BC are the sides of a cyclic quadrilateral. Define B1 and C1 similarly. Prove that A1, B1, and C1

are collinear.

Sammy Luo

G2
G2

ABCD is a cyclic quadrilateral inscribed in the circle ω. Let AB ∩ CD = E, AD ∩ BC = F . Let ω1, ω2

be the circumcircles of AEF,CEF , respectively. Let ω ∩ ω1 = G, ω ∩ ω2 = H. Show that AC,BD,GH are
concurrent.

Yang Liu

G3
G3

Let A1A2A3 · · ·A2013 be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon,
there exists a point Q 6= P such that AiP

AiQ
is constant for i ∈ {1, 2, 3, · · · , 2013}.

Robin Park

G4
G4

Let ABCD be a quadrilateral inscribed in circle ω. Define E = AA ∩ CD, F = AA ∩ BC, G = BE ∩ ω,
H = BE ∩AD, I = DF ∩ω, and J = DF ∩AB. Prove that GI, HJ , and the B-symmedian are concurrent.

Robin Park

G5
G5

Let P be a point in the interior of an acute triangle ABC, and let Q be its isogonal conjugate. Denote by
ωP and ωQ the circumcircles of triangles BPC and BQC, respectively. Suppose the circle with diameter
AP intersects ωP again at M , and line AM intersects ωP again at X. Similarly, suppose the circle with
diameter AQ intersects ωQ again at N , and line AN intersects ωQ again at Y .

Prove that lines MN and XY are parallel. (Here, the points P and Q are isogonal conjugates with respect to
4ABC if the internal angle bisectors of ∠BAC, ∠CBA, and ∠ACB also bisect the angles ∠PAQ, ∠PBQ,
and ∠PCQ, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Sammy Luo
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G6
G6

Let ABCD be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles AOB and COD
meet again at G, while the circumcircles of triangles AOD and BOC meet again at H. Let ω1 denote
the circle passing through G as well as the feet of the perpendiculars from G to AB and CD. Define ω2

analogously as the circle passing through H and the feet of the perpendiculars from H to BC and DA. Show
that the midpoint of GH lies on the radical axis of ω1 and ω2.

Yang Liu

G7
G7

Let ABC be a triangle inscribed in circle ω with center O; let ωA be its A-mixtilinear incircle, ωB be its
B-mixtilinear incircle, ωC be its C-mixtilinear incircle, and X be the radical center of ωA, ωB , ωC . Let A′, B′,
C ′ be the points at which ωA, ωB , ωC are tangent to ω. Prove that AA′, BB′, CC ′ and OX are concurrent.

Robin Park

G8
G8

In triangle ABC with incenter I and circumcenterO, let A′, B′, C ′ be the points of tangency of its circumcircle
with its A,B,C-mixtilinear circles, respectively. Let ωA be the circle through A′ that is tangent to AI at
I, and define ωB , ωC similarly. Prove that ωA, ωB , ωC have a common point X other than I, and that
∠AXO = ∠OXA′.

Sammy Luo

G9
G9

Let P be a point inside a triangle ABC such that ∠PAC = ∠PCB. Let the projections of P onto BC, CA,
and AB be X,Y, Z respectively. Let O be the circumcenter of 4XY Z, H be the foot of the altitude from
B to AC, N be the midpoint of AC, and T be the point such that TY PO is a parallelogram. Show that
4THN is similar to 4PBC.

Sammy Luo

G10
G10

We are given triangles ABC and DEF such that D ∈ BC,E ∈ CA,F ∈ AB, AD ⊥ EF,BE ⊥ FD,CF ⊥
DE. Let the circumcenter of DEF be O, and let the circumcircle of DEF intersect BC,CA,AB again at
R,S, T respectively. Prove that the perpendiculars to BC,CA,AB through D,E, F respectively intersect at
a point X, and the lines AR,BS,CT intersect at a point Y , such that O,X, Y are collinear.

Sammy Luo
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G11
G11

Let ABC be a triangle with circumcenter O. Let P be a point inside ABC, so let the points D,E, F be on
BC,AC,AB respectively so that the Miquel point of DEF with respect to ABC is P . Let the reflections
of D,E, F over the midpoints of the sides that they lie on be R,S, T . Let the Miquel point of RST with
respect to the triangle ABC be Q. Show that OP = OQ.

Yang Liu

G12
G12

Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

G13
G13

Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner
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Number Theory

N1
N1

Does there exist a strictly increasing infinite sequence of perfect squares a1, a2, a3, ... such that for all k ∈ Z+

we have that 13k|ak + 1?

Jesse Zhang

N2
N2

Define the Fibanocci sequence recursively by F1 = 1, F2 = 1 and Fi+2 = Fi + Fi+1 for all i. Prove that for
all integers b, c > 1, there exists an integer n such that the sum of the digits of Fn when written in base b is
greater than c.

Ryan Alweiss

N3
N3

Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a
polynomial P , of degree n and with rational coefficients, such that the following property holds: exactly one
of

P (k)

tk
and

P (k)

tk+1

is an integer for each k = 0, 1, ...,m.

Michael Kural

N4
N4

Let N denote the set of positive integers, and for a function f , let fk(n) denote the function f applied k
times. Call a function f : N→ N saturated if

ff
f(n)(n)(n) = n

for every positive integer n. Find all positive integers m for which the following holds: every saturated
function f satisfies f2014(m) = m.

Evan Chen

N5
N5

Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a positive integer.
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.

Matthew Babbitt
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N6
N6

Show that the numerator of

2p−1

p+ 1
−

(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
is a multiple of p3 for any odd prime p.

Yang Liu

N7
N7

Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then
n+ c divides an + bn + n.

Evan Chen

N8
N8

Let N denote the set of positive integers. Find all functions f : N→ N such that:

(i) The greatest common divisor of the sequence f(1), f(2), . . . is 1.

(ii) For all sufficiently large integers n, we have f(n) 6= 1 and

f(a)n | f(a+ b)a
n−1

− f(b)a
n−1

for all positive integers a and b.

Yang Liu

N9
N9

Let d be a positive integer and let ε be any positive real. Prove that for all sufficiently large primes p with
gcd(p− 1, d) 6= 1, there exists an positive integer less than pr which is not a dth power modulo p, where r is
defined by

log r = ε− 1

gcd(d, p− 1)
.

Shashwat Kishore
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N10
N10

Find all positive integer bases b ≥ 9 so that the number

n−1 1′s︷ ︸︸ ︷
11 · · · 1 0

n−1 7′s︷ ︸︸ ︷
77 · · · 7 8

n 1′s︷ ︸︸ ︷
11 · · · 1b

3

is a perfect cube in base 10 for all sufficiently large positive integers n.

Yang Liu

N11
N11

Let p be a prime satisfying p2 | 2p−1 − 1, and let n be a positive integer. Define

f(x) =
(x− 1)p

n − (xp
n − 1)

p(x− 1)
.

Find the largest positive integer N such that there exist polynomials g(x), h(x) with integer coefficients and
an integer r satisfying f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang
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A2
Given positive reals a, b, c, p, q satisfying abc = 1 and p ≥ q, prove that

p
(
a2 + b2 + c2

)
+ q

(
1

a
+

1

b
+

1

c

)
≥ (p+ q)(a+ b+ c).

AJ Dennis

Solution 1. First, note it suffices to prove that sum a2 + a−1 is at least twice sum a; in other words, the
case p = q. Just multiply both sides by q and add p− q times the inequality sum a2 is at least sum a, which
is due to Cauchy and a+ b+ c ≥ 3.

So we must show that a2 +b2 +c2 +1/a+1/b+1/c ≥ 2(a+b+c). However, we have that 1/a+1/b+1/c ≥ 3
by AM-GM. So it suffices to have a2 + b2 + c2 + 1 + 1 + 1 ≥ 2a+ 2b+ 2c, but a2 + 1 ≥ 2a and similar so this
is obvious. �

Solution 2. Note
∑
a2 ≥

∑
bc =

∑
a−1 by AM-GM (or Cauchy-Schwarz), so LHS ≥ p+q

2

(∑
a2 +

∑
bc
)
.

But ∑
a2 +

∑
bc =

∑
(a2 +

1

2
(ab+ ac)) ≥ 2

∑
a3/2b1/4c1/4 = 2

∑
a5/4

Now we can finish by weighted AM-GM or (weighted) CS/Holder to get
∑
a5/4 ≥

∑
a, implying the result.

�

This problem and its solutions were proposed by AJ Dennis.
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A3
Let a, b, c, d, e, f be positive real numbers. Given that def + de+ ef + fd = 4, show that

((a+ b)de+ (b+ c)ef + (c+ a)fd)2 ≥ 12(abde+ bcef + cafd).

Allen Liu

Solution 1. First, some beginning stuff. Note that the condition implies that d = 2m
n+p , e = 2n

m+p , f =
2p
m+n (∗).

Also, the inequality (a+ b+ c)2 ≥ (2 cos(X) + 2) · ab+ (2 cos(Y ) + 2) · ac+ (2 cos(Z) + 2) · bc, where X,Y, Z
are angles of a triangle. (Note hard, just use quadratic discriminants).

Now rewrite the LHS as (a(de+ df) + b(de+ ef) + c(df + ef))
2

and then substitute A = a(de + df), B =
b(de + ef), C = c(df + ef). Then, the inequality becomes (A + B + C)2 ≥ 12

∑
cyc

BC
(d+e)(d+f) . So now it

suffices to find a triangle such that

12

(d+ e)(d+ f)
≤ 2 cos(X) + 2

and its cyclic counterparts hold. But note that if the triangle has side lengths y + z, x + z, x + y, then

2 cos(X) + 2 = 4 x(x+y+z)
(x+y)(x+z) .

So we need
3

(d+ e)(d+ f)
≤ x(x+ y + z)

(x+ y)(x+ z)

So substitute in (∗) to get the equivalent statement

3(m+ n)(m+ p)(n+ p)2

(m2 +mp+ n2 + np)(m2 +mn+ p2 + np)
≤ 4

x(x+ y + z)

(x+ y)(x+ z)

So choose x = np(n+ p), y = mp(m+ p), z = mn(m+ n). It is not hard to show that the above inequality
reduces to

4 (mn(m+ n) +mp(m+ p) + np(n+ p)) ≥ 3(m+ n)(m+ p)(n+ p)

, which is immediate by expansion. �

This problem and solution were proposed by Allen Liu.

Solution 2. Note that de+ ef + fe ≥ 3, so we have:

(e+ f)2(d+ f)(e+ d) ≥ (3 + d2)(e+ f)2

=⇒ [(e+ f)(d+ f)− 3][(e+ d)(e+ f)− 3] ≥ [3− d(e+ f)]2

Therefore,

4

[
1

(e+ f)(d+ f)
− 3

(e+ f)2(d+ f)2

] [
1

(e+ d)(e+ f)
− 3

(e+ d)2(e+ f)2

]
≥
[

1

(d+ f)(f + e)
+

1

(d+ e)(e+ f)
− 1

(d+ e)(d+ f)
− 6

(d+ e)(d+ f)(e+ f)2

]2
Therefore the quadratic expression:

y2
[

1

(e+ f)(d+ f)
− 3

(e+ f)2(d+ f)2

]
+yz

[
1

(d+ f)(f + e)
+

1

(d+ e)(e+ f)
− 1

(d+ e)(d+ f)
− 6

(d+ e)(d+ f)(e+ f)2

]
+z2

[
1

(e+ d)(e+ f)
− 3

(e+ d)2(e+ f)2

]
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is always nonnegative. (The y2 and constant coefficients are positive). So:

(y + z)

[
y

(d+ f)(e+ f)
+

z

(d+ e)(e+ f)

]
≥ yz

e+ f
+ 3

(
y

(d+ e)
+

z

(d+ f)

)2

=⇒ 4

[
(y + z)2 − 12yz

(d+ e)(d+ f)

]
≥
[
2(y + z)− 12y

(d+ f)(e+ f)
− 12z

(d+ e)(e+ f)

]2
.

So the quadratic expression:

x2 + x

[
2y + 2z − 12y

(d+ f)(e+ f)
− 12z

(f + e)(e+ f)

]
+ y2 + c2 + 2yz − 12yz

(d+ e)(d+ f)

is always nonnegative. (The x2 and constant coefficients are positive). So:

(x+ y + z)2 ≥
∑
cyc

x

(d+ e)(d+ f)

which is precisely what we want to show. (Let x = a(de+ df), et cetera.) �

This second solution was suggested by David Stoner.
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A4
Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct real numbers
a and b.)

Evan Chen

Answer. For all real numbers x, f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0, we can get that
f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y− f(y)− (b+ 2c) is constant, so that y− f(y) is constant. Thus, f is
linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get 2a = b+ c, 2b = c+a
and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x + C, where C is an arbitrary real. One can easily
verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. Although it may look intimidating, this is not a very hard problem. The basic idea is to view
f(0), g(0) and h(0) as constants, and write the first equation entirely in terms of f(x), much like we would
attempt to eliminate variables in a standard system of equations. At this point we still had two degrees of
freedom, x and y, so it seems likely that the result would be easy to solve. Indeed, we simply select x in
such a way that two of the terms cancel, and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives g(f(a)) + h(b) =
g(f(b)) + h(a) =⇒ g(f(a)) − h(a) = g(f(b)) − h(b). So g(f(x)) = h(x) + a1 for a constant a1. Similarly,
h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.

Now, we will show that h(h(x)) − f(x) and h(h(x)) − g(x) are both constant. For the second, just plug in
x = 0 to the third equation. For the first, let x = a3, y = k in the original to get g(f(h(k))) = h(a3) + f(k).
But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is constant as desired.

Now f(x)− g(x) is constant, and by symmetry g(x)−h(x) is also constant. Now let g(x) = f(x) + p, h(x) =
f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q
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Now plugging in (x, y) and (y, x) into the first one gives f(x+ f(y)) = f(y+ f(x)) =⇒ f(x)−x = f(y)− y
from injectivity, f(x) = x + c. Plugging this in gives 2p = q, 2q = p, p + q = 0 so p = q = 0 and
f(x) = x+ c, g(x) = x+ c, h(x) = x+ c for a constant c are the only solutions. �

This second solution was suggested by David Stoner.

Solution 3. By putting (x, y) = (0, a) we derive that f(f(a)) = g(0) + h(a) for each a, and the analogous
counterparts for g and h. Thus we can derive from (x, y) = (t, g(t)) that

h(f(t) + h(g(t))) = f(f(t)) + g(g(t))

= g(0) + h(t) + h(0) + f(t)

= f(f(0)) + g(t+ g(t))

= h(f(0) + h(t+ g(t)))

holds for all t. Thus by injectivity of h we derive that

f(x) + h(g(x)) = f(0) + h(x+ g(x)) (∗)

holds for every x.

Now observe that placing (x, y) = (g(a), a) gives

g(2g(a)) = g(g(a) + g(a)) = h(g(a)) + f(a)

while placing (x, y) = (g(a) + a, 0) gives

g(g(a) + a+ g(0)) = h(a+ g(a)) + f(0).

Equating this via (∗) and applying injectivity of g again, we find that

2g(a) = g(a) + a+ g(0)

for each a, whence g(x) = x+ b for some real number b. We can now proceed as in the earlier solutions. �

This third solution was suggested by Mehtaab Sawhney.

Solution 4. In the first given, let x = a+ g(0) and y = b to obtain

f(a+ g(0) + f(b)) = g(a+ g(0)) + h(b) = h(a) + h(b) + f(0).

Swapping the roles of a and b, we discover that

f(b+ g(0) + f(a)) = f(a+ g(0) + f(b)).

But f is injective; this implies f(x)− x is constant, and we can the proceed as in the previous solutions. �

This fourth solution was suggested by alibez.
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A6
Let a, b, c be positive reals such that a+ b+ c = ab+ bc+ ca. Prove that

(a+ b)ab−bc(b+ c)bc−ca(c+ a)ca−ab ≥ acababcbc.

Sammy Luo

Solution 1. Note f(x) = x log x is convex. The key step: weighted Popoviciu gives

bf(a) + cf(b) + af(c) + (a+ b+ c)f

(
bc+ ca+ ab

a+ b+ c

)
≥
∑
cyc

(b+ c)f

(
ab+ bc

b+ c

)
.

Exponentiating gives

aab · bbc · cca ·
(
bc+ ca+ ab

a+ b+ c

)bc+ca+ab
≥
∏
cyc

(
b(c+ a)

b+ c

)bc+ab

=
∏
cyc

aab+ca(b+ c)ab+ca−bc−ab

Cancelling some terms and using bc+ca+ab
a+b+c = 1 gives

1 ≥
∏
cyc

aca(a+ b)bc−ab

which rearranges to the result. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let a+ b+ c = ab+ bc+ ca = S. We have

∏
cyc

(
b(a+ c)

a+ b

)ab
≤ 1

S

∑
cyc

ab2(a+ c)

a+ b
≤ 1

Where the last is true because:

(ab+ bc+ ca)2 − (a+ b+ c)

[∑
cyc

ab2(a+ c)

a+ b

]
=
abc(

∑
cyc a

3b−
∑
a2bc)

(a+ b)(b+ c)(c+ a)
≥ 0

as desired. �

This second solution was suggested by David Stoner.

23 http://www.aops.com/Forum/viewtopic.php?t=542348

http://www.aops.com/Forum/viewtopic.php?t=542348
http://www.aops.com/Forum/viewtopic.php?t=542348


A7 Algebra – Solutions ELMO 2014

A7
Find all positive integers n with n ≥ 2 such that the polynomial

P (a1, a2, . . . , an) = an1 + an2 + . . .+ ann − na1a2 . . . an

in the n variables a1, a2, . . . , an is irreducible over the real numbers, i.e. it cannot be factored as the product
of two nonconstant polynomials with real coefficients.

Yang Liu

Answer. The permissible values are n = 2 and n = 3.

Solution. For n = 2 and n = 3 we respectively have the factorizations (a1 − a2)2 and

1
2 (a1 + a2 + a3)(a21 + a22 + a23 − a1a2 − a2a3 − a3a1).

For n ≥ 4, we view P at as a polynomial in a1 and note that the constant term is an2 + an3 + . . . + ann. So
this polynomial must be reducible. We can set a5, a6, . . . , an = 0, so now we need for an2 + an3 + an4 to be
irreducible over C. Let a = a2, b = a3, c = a4. Now we look at it as a polynomial in a, and it factors as

n∏
i=1

(
a+ ωi · n

√
bn + cn

)
where the ωi are the necessary roots of unity. Now we look how we can split this into two polynomials and
look at their respective constant terms. So the constant terms would be ω(bn+cn)

k
n for some 0 < k < n, and

some root of unity ω. So the previous expression must be a polynomial, say Q(x). But (bn + cn)k = Q(x)n.
On the right-hand side, each root has multiplicity n, but since bn + cn has no double roots, all roots on the
left-hand side have multiplicity k < n, contradiction. �

This problem and solution were proposed by Yang Liu.

24 http://www.aops.com/Forum/viewtopic.php?t=576395

http://www.aops.com/Forum/viewtopic.php?t=576395
http://www.aops.com/Forum/viewtopic.php?t=576395


A8 Algebra – Solutions ELMO 2014

A8
Let a, b, c be positive reals with a2014 + b2014 + c2014 + abc = 4. Prove that

a2013 + b2013 − c
c2013

+
b2013 + c2013 − a

a2013
+
c2013 + a2013 − b

b2013
≥ a2012 + b2012 + c2012.

David Stoner

Solution. The problem follows readily from the following lemma.

Lemma 1. Let x, y, z be positive reals, not all strictly on the same side of 1. Then
∑

x
y + y

x ≥
∑
x+ 1

x .

Proof. WLOG (x− 1)(y − 1) ≤ 0; then

(x+ y + z − 1)(x−1 + y−1 + z−1 − 1) ≥ (xy + z)(x−1y−1 + z) ≥ 4

by Cauchy. Alternatively, if x, y ≥ 1 ≥ z, one may smooth z up to 1 (e.g. by differentiating with respect to
z and observing that x−1 + y−1 − 1 ≤ x+ y − 1) to reduce the inequality to x

y + y
x ≥ 2.

Now simply note that
∑
a2013 + a−2013 ≥

∑
a2012 + a−2012. �

This problem and solution were proposed by David Stoner.

Remark. An earlier (and harder) version of the problem asked to prove that(∑
cyc

a(a2 + bc)

)(∑
cyc

(
a

b
+
b

a

))
≥

(∑
cyc

√
(a+ 1)(a3 + bc)

)(∑
cyc

√
a(a+ 1)(a+ bc)

)
.

However, it was vetoed by the benevolent dictator.

Here is the solution to the harder version. Let si = ai + bi + ci and p = abc. The key is to Cauchy out s3’s
from the RHS and use the lemma (in the form s1s−1 − 3 ≥ s1 + s−1) on the LHS to reduce the problem to

(s1 + s−1)2(s3 + 3p)2 ≥ (3 + s1)(3 + s−1)(s3 + ps−1)(s3 + ps1).

By AM-GM on the RHS, it suffices to prove

s1+s−1

2 + s1+s−1

2
s1+s−1

2 + 3
≥
s3 + p s1+s−1

2

s3 + 3p
,

or equivalently, since s1+s−1

2 ≥ 3, that s3
p ≥

s1+s−1

2 . By the lemma, this boils down to 2
∑

cyc a
3 ≥∑

cyc a(b2 + c2), which is obvious.
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A9
Let a, b, c be positive reals. Prove that√

a2(bc+ a2)

b2 + c2
+

√
b2(ca+ b2)

c2 + a2
+

√
c2(ab+ c2)

a2 + b2
≥ a+ b+ c.

Robin Park

Remark. Equality occurs not only at a = b = c but also when a = b and c = 0.

Solution. By Holder,(∑
cyc

√
a2(a2 + bc)

b2 + c2

)2(∑
cyc

a(a2 + bc)2(b2 + c2)

)
≥

(∑
cyc

a(a2 + bc)

)3

.

So we need to prove that(∑
cyc

a(a2 + bc)

)3

≥ (a+ b+ c)2

(∑
cyc

a(a2 + bc)2(b2 + c2)

)
.

Expanding this gives the following triangle in Chinese Dumbass Notation.

1

0 0

-1 9 -1

1 -3 -3 1

-1 -8 21 -8 -1

-1 8 -11 -11 8 -1

1 -8 -11 21 -11 -8 1

-1 -3 21 -11 -11 21 -3 1

0 9 -3 -8 8 -8 -3 9 0

1 0 -1 1 -1 -1 1 -1 0 1

This is the sum of the following seven inequalities:

0 ≤
∑
cyc

a5(a2 − b2)(a2 − c2)

0 ≤
∑
cyc

b3c3(b+ c)(b− c)2

0 ≤
∑
cyc

3abc · a4(a− b)(a− c)

0 ≤
∑
cyc

2abc · a2(a2 − b2)(a2 − c2)

0 ≤
∑
cyc

2abc · (b4 + c4 + 2bc(b2 + c2))(b− c)2

0 ≤
∑
cyc

17(abc)2 · a(a− b)(a− c)

0 ≤
∑
cyc

6(abc)2 · a(b− c)2.

Hence we’re done. �

This problem was proposed by Robin Park. This solution was given by Evan Chen.
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C1
You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the
following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.

2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead
ends up.

3. Do either of the above, switching the roles of the words “magenta” and “left” with those of “yellow”
and “right”, respectively.

4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, ap-
pearing somewhere in the circle, and swap the orders of each pair.

5. Remove four consecutive beads of one color.

Starting with the circle: “yellow, yellow, magenta, magenta, cyan, cyan, cyan”, determine whether or not
you can reach a) “yellow, magenta, yellow, magenta, cyan, cyan, cyan”, b) “cyan, yellow, cyan, magenta,
cyan”, c) “magenta, magenta, cyan, cyan, cyan”, d) “yellow, cyan, cyan, cyan”.

Sammy Luo

Solution. So represent the beads in a string; write j for ma[u]j[/u]enta, i for [u]i[/u]ellow, C for cyan. Also,
write k as a shorthand for ij, and 1 for (no beads). So Ci = jC,Cj = kC,Ck = iC. Also, iiii = jjjj = 1,
ij...ij = ji...ji

We are reminded of quaternion multiplication. So what’s C? We could ignore this question by moving all the
Cs together; instead, we interpret the string as a series of operations (applied from left to right) to perform
on a quaternion. Note that if a yellow bead corresponds to left multiplying by i and a magenta bead by j,
i.e. an i in the string transforms x = a+ bi+ cj + dk to ix = −b+ ai− dj + ck, where a, b, c, d ∈ R, then the
operation C(x) = a+ ci+ dj + bk that cyclicly permutes the i, j, k components satisfies

i(C(x)) = −c+ ai− bj + dk = C(−c+ di+ aj − bk) = C(j(x)).

So Ci = jC in the beads; similarly, Cj = kC,Ck = iC as wanted.

So we let this be the cyan operation. Then, starting with the general quaternion x = a + bi + cj + dk, the
initial state of the bead string, iijjCCC, gives C(C(C(j(j(i(i(x))))))) = x, since C3 = 1. Since all the
beads are invertible, starting the string at any other place in the circle will still produce the identity; all the
allowed bead operations preserve the fact that the bead string composes to an identity (since removing 4
cyan beads will never be possible). Now we can check that the other strings do not compose to the identity.

• The first one is ijijCCC which is multiplication by −1.

• The second is CiCjC = jCkCC = jiCCC, which is left multiplication by k.

• The third is jjCCC, again multiplication by −1.

• The fourth is iCCC, left multiplication by i.

So all are impossible. �

This problem and solution were proposed by Sammy Luo.
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C2
A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words, for
every positive integer n greater than 2, there do not exist pairwise distinct black squares s1, s2, . . . , sn such
that si and si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1).

What is the maximum possible number of filled black squares?

David Yang

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n+ 1)− 1. In this particular instance,

m = 2014 and n = 22014 + 1.

Solution 1. Let n = 2m + 1. Double-counting square edges yields 3v + 1 ≤ 4v − e ≤ 2n(n + 1), so because
n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved iff (a) the graph formed
by black squares is a connected forest (i.e. a tree) and (b) all but two square edges belong to at least one
black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an “H-shape” (so
if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is black); call this G1. To go
from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in Gm, and fill in (x, y) with x, y not both even
iff x + y is odd (so iff one of x, y is odd and the other is even). Each “newly-created” white square has
both coordinates odd, and thus borders 4 (newly-created) black squares. In particular, there are no new
white squares on the border (we only have the original two from G1). Furthermore, no two white squares
share an edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b). To
check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff (x1, y1) and
(x2, y2) are black squares (and thus connected) in Gm (the new black squares are essentially just “bridges”).
Indeed, every path in Gm+1 alternates between coordinates with odd and even sum, or equivalently, new
and old black squares. But two black squares (x1, y1) and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2)
is black and adjacent to (2x1, 2y1) and (2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is
clear: the set of old black squares must remain connected in Gm+1, and all new black squares (including
those on the boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a cycle in Gm by
removing the new black squares from a cycle in Gm+1 (as every other square in a cycle would have to have
odd coordinate sum). �

This problem and solution were proposed by David Yang.

Solution 2. As above, we can show that there are at most 2
3n(n+1)−1 black squares. We provide a different

construction now for n = 2k + 1.

Consider the grid as a coordinate plane (x, y) where 0 ≤ x, y ≤ 2m. Color white the any square (x, y) for
which there exists a positive integer k with x ≡ y ≡ 2k−1 (mod 2)k. Then, color white the square (0, 0).
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Color the remaining squares black. Some calculations show that this is a valid construction which achieves
2
3n(n+ 1)− 1. �

This second solution was suggested by Kevin Sun.

Solution 3. We can achieve the bound of 2
3n(n + 1) − 1 as above. We will now give a construction which

works for all n = 6k + 5. Let M = 3k + 2.

Consider the board as points (x, y) where −M ≤ x, y ≤M . Paint white the following types of squares:

• The origin (0, 0) and the corner (M,M).

• Squares of the form (±a, 0) and (0,±a), where a 6≡ 1 (mod 3) and 0 < a < M .

• Any square (±x,±y) such that y − x ≡ 0 (mod 3) and 0 < x, y < M .

Paint black the remaining squares. This yields the desired construction. �

This third solution was suggested by Ashwin Sah.
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C3
We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with
center X mapping every point in S other than X to another point in S (possibly the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very set S of size
n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point P ′ along ray
OP such that OP ·OP ′ = r2.)

Sammy Luo

Answer. For part (b), the maximal size is 5.

Solution. For part (a), take a regular (n+ 1)-gon and number the vertices Ai (i = 0, 1, 2, . . . , n) Now invert
the polygon with center A0 with arbitrary power. This gives a very set of size n. (This can be easy checked
with angle chase, PoP, etc.) By scaling and translation, this shows the existence of a very set as in part (a).

It remains to prove uniqueness. Suppose points A = P1, P2, . . . , Pn = B and A = X1, X2, . . . , Xn = B
are two very sets on AB in that order. Assume without loss of generality that X1X2 > P1P2. Then
X2X

2
1 = X2X3 · (X1Xn −X1X2) =⇒ X2X3 > P2P3. Proceeding inductively, we find XkXk+1 > PkPk+1

for k = 1, 2, . . . , n− 1. Thus, X1Xn > P1Pn, which is a contradiction.

For (b), let P (A) (let’s call this power, A is a point in space) be a function returning the radius of inversion
with center A. Note that the power of endpoints of 1D very sets are equal, and these powers are the highest
out of all points in the very set. Let the convex hull of our very set be H. Let the vertices be A1, A2, ..., Am.
(We have m ≥ 3 since the points are not collinear.) Since A1, A2 are endpoints of a 1D very set, they have
equal power. Going around the hull, all vertices have equal power.

Lemma 1. Other than the vertices, no other points lie on the edges of H, and H is equilateral.

Proof. Say X is on A1A2. Then X,A3 are on opposite ends of a 1D very set, so they have equal power. Then
P (X) = P (A1) = P (A2) contradicting the fact the endpoints have the unique highest power. Therefore,
since all sides only have 2 points on them, and all vertices have equal power, all sides are equal.

Lemma 2. H is a regular polygon.

Proof. Let’s look at the segment A1A3. Say that on it we have a very set of size k − 1. By uniqueness and
the construction in (a), and the fact that P (A1) = P (A2) = P (A3), we get that A1, A2, A3 are 3 vertices of
a regular k-gon. Now the very set on segment A1A3 under inversion at A2 would map to a regular k-gon.
So all vertices of this regular k-gon would be in our set. Assuming that not all angles are equal taking the
largest angle who is adjacent to a smaller angle, we contradict convexity. So all angles are equal. Combining
this with Lemma 1, H is a regular polygon.

Lemma 3. H cannot have more than 4 vertices.

Proof. Firstly, note that no points can be strictly any of the triangles AiAi+1Ai+2. (*) Or else, inverting
with center Ai+1 we get a point outside H. First, let’s do if m (number of vertices) is odd. Let m = 2k+ 1.
(k ≥ 2) Look at the inversive image of A2k+1 under inversion with center A2. Say it maps to X. Note that
P (X) < P (Ai) for any i. Now look at the line Ak+2X. Since Ak+2 is an endpoint, but P (X) < P (Ak+2), the
other endpoint of this 1D very set must be on ray Ak+2X past X, contradicting (*), since no other vertices
of H are on this ray. Similarly for m even and ≥ 6 we can also find 2 points like these who contain no other
vertices in H on the line through them.
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Lemma 4. We only have 2 distinct very sets in 2D (up to scaling), an equilateral triangle (when n = 3)
and a square with its center (when n = 5).

Proof. First if H has 3 points, then by (*) in Lemma 3, no other points can lie inside H. So we get an
equilateral triangle. If H has 4 points, then by (*) in Lemma 3, the only other point that we can add into
our set is the center of the square. This also must be added, and this gives a very set of size 5.

Hence, the maximal size is 5. �

This problem was proposed by Sammy Luo. This solution was given by Yang Liu.
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C4
Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red
and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red
block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every
b years,

(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever
fall at exactly the same time. Consider a period of rb years in which the column is initially empty.
Determine, in terms of r and b, the number of blocks in the column at the end.

(b) Now suppose r and b are relatively prime and r + b is odd. At time t = 0, the column is initially
empty. Suppose a red block falls at times t = r, 2r, . . . , (b − 1)r years, while a blue block falls at
times t = b, 2b, . . . , (r − 1)b years. Prove that at time t = rb, the number of blocks in the column is
|1 + 2(r − 1)(b+ r)− 8S|, where

S =

⌊
2r

r + b

⌋
+

⌊
4r

r + b

⌋
+ . . .+

⌊
(r + b− 1)r

r + b

⌋
.

Sammy Luo

Remark. The second part of this problem was suggested by Allen Liu.

Answer. The answer is 2 gcd(r, b).

Solution 1. Consider strings of letters x, y, cancelling xx, Here yy. x, y correspond to red, blue blocks,
respectively. I’ll denote a way for the blocks to fall by (r, b, C), so r is the years between cycle of red blocks,
b is cycle between blue blocks, and C is the cycle offset, more specifically how many years after the first red
block falls does the first blue block fall. C < 0 is possible, that just means that the first blue block falls
earlier than the first red block. To do this, we induct on r + b. Assume, gcd(r, b) = 1.

Now, let r > b and r = bk + q, 0 ≤ q < b. We have 2 similar cases to consider:

Case 1: q is odd. First we’ll do if C > 0, and then by the problem statement, C < b. We’ll actually show
that this falling situation is the same as (q, b, C) = (b, q,−C), and then we’ll finish this case by induction.
In this case, it’s easy to see that the falling will result in a sequence like

x(y . . . y)x(y . . . y) . . . x(y . . . y).

Note that the (y . . . y) each have length either k or k+ 1, with exactly q of those strings having length k+ 1
and the other b− q having length k. Note that k is even. Now for each of the (y . . . y) strings, reduce them
to a single letter depending on parity. Now we are left with q y’s and still b x’s. We show the resultant string
is equal to (q, b, C).

This is actually pretty clear using simple remainder arguments. Say that the first x block fell at time 0. Just
note that the length of (some y) was k + 1 iff the first y in the string of (some y) fell at time t and 0 < t
(mod r) < q (then t+kb < kb+ q = r, so another x would still have not appeared, but will appear next). So
seeing all this, my claim becomes equivalent to the following assertion: Let l be the smallest positive integer

such that 0 < (C + l · b) (mod r) < q. Let t = (C + l · b) (mod r) Let j = (C+l·b)−t
r . Then j is also the

smallest positive integer such that (j + 1) · q > C. The proof of this is pretty silly. Then jr + t = C + l · b.
Taking (mod b) gives C ≡ jq + t, and since 0 < C < b, C ≤ jq + t < q(j + 1). The converse follows from
the fact that for anytime the 2 sides match (mod b), we can solve for l. Why is it equivalent? Well, the
first time k+ 1 y’s appear consecutively in the initial sequence is when 0 < t (mod r) < q, and the first time
(since k + 1 is odd) a y would appear in the reduced sequence is when q(j + 1) > C. And these match! For
the rest, just rotate the sequence and keep going. Now induction gives that it reduces to the string xy or yx.
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Ok, now C < 0. So then our sequence would be yyxyyyyxyyyxyy or something like that. What we do is the
following: We rotate it by putting stuff on the back end, and then use the case C > 0, and associativity of
cancellation:

yyxyyyyxyyyxyy = (yyx)(xyy)yyxyyyyxyyyxyy

= (yyx)(xyyyyxyyyyxyyy)(xyy)

= (yyx)(xy)(xyy)

= yx.

(Computations show that it always ends up this way). So C < 0 is finished.

Case 2: q is even. Similar remainder arguments as above show that if C > 0, As above, it’s equivalent to
saying the minimal j with (b−q)(j+1) > b−C is also the minimal j with C+l·b = j·r+t and q < t < b. Taking
(mod b), we get b−C ≡ j(b−q)−t. But 0 < −t (mod b) < b−q. So b−C ≤ j(b−q)+(b−q) = (j+1)(b−q),
as desired. �

This first solution was suggested by Yang Liu.

Solution 2. As in Yang’s solution have (r, b, C) represent the state. WLOG r > b so we can set 0 < C < b.
Only bCc actually matters so there are b possibilities. Before deletion, the sequence consists of b blue blocks
in a cycle with some number of red blocks between each adjacent pair. We can see that taking any possible
sequence and shifting the numbers of red blocks between each pair right one pair gives an equivalent sequence,
but since (r, b) = 1 all of these are distinct, so they’re the only possibilities.

So now every (r, b, C) is equivalent to (r, b, ε) where 0 < ε < 1, except shifted. Basically this yields xyS,
where S is what would have resulted from all the nonsimultaneous blocks if we allowed C = 0. But by
symmetry S is symmetric about its center rb

2 , so everything cancels out in pairs from the center outwards,
until we’re left with xy.

Basically this leaves the issue of what the offset, in changing the point at which the cyclic sequence’s wrap-
over is broken, does. Let the unshifted string be xySA, where A is the part that is cut off and shifted to
the left. Since SA must be a palindrome by the symmetry argument above, S is of the form (A−1)(S′),
where A−1 is A in reverse and S′ is a palindrome. Then the shifted string cancels to AxyA−1. We claim
this cancels with only two elements remaining. Indeed we can keep reducing the size of the A; since A’s
last element is the same as A−1’s first, one of them has to cancel with one of x, y, leaving A′yxA′−1, where
|A′| = |A| − 1, and this continues until only xy or yx remains. �

This second solution was suggested by Allen Liu.

This problem was proposed by Sammy Luo.
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C6
Let f0 be the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each positive
integer m, let fm(x, y) be the remainder when

fm−1(x, y) +

1∑
j=−1

1∑
k=−1

fm−1(x+ j, y + k)

is divided by 2. Finally, for each nonnegative integer n, let an denote the number of pairs (x, y) such that
fn(x, y) = 1. Find a closed form for an.

Bobby Shen

Solution. Note that ai is simply the number of odd coefficients of Ai(x, y) = A(x, y)i, where A(x, y) =
(x2 + x + 1)(y2 + y + 1) − xy. Throughout this proof, we work in F2 and repeatedly make use of the

Frobenius endomorphism in the form A2km(x, y) = Am(x, y)2
k

= Am(x2
k

, y2
k

) (*). We advise the reader to
try the following simpler problem before proceeding: “Find (a recursion for) the number of odd coefficients
of (x2 + x+ 1)2

n−1.”

First suppose n is not of the form 2m − 1, and has i ≥ 0 ones before its first zero from the right. By direct
exponent analysis (after using (*)), we obtain an = an−(2i−1)

2

a2i−1. Applying this fact repeatedly, we find

that an = a2`1−1 · · · a2`r−1, where `1, `2, . . . , `r are the lengths of the r consecutive strings of ones in the
binary representation of n. (When n = 2m − 1, this is trivially true. When n = 0, we take r = 0 and a0 to
be the empty product 1, by convention.)

We now restrict our attention to the case n = 2m−1. The key is to look at the exponents of x and y modulo
2 – in particular, A2n(x, y) = An(x2, y2) has only “(0, 0) (mod 2)” terms for i ≥ 1. This will allow us to find
a recursion.

For convenience, let U [B(x, y)] be the number of odd coefficients of B(x, y), so U [A2n−1(x, y)] = a2n−1.
Observe that

A(x, y) = (x2 + x+ 1)(y2 + y + 1)− xy = (x2 + 1)(y2 + 1) + (x2 + 1)y + x(y2 + 1)

(x+ 1)A(x, y) = (y2 + 1) + (x2 + 1)y + x3(y2 + 1) + (x3 + x)y

(x+ 1)(y + 1)A(x, y) = (x2y2 + 1) + (x2y + y3) + (x3 + xy2) + (x3y3 + xy)

(x+ y)A(x, y) = (x2 + y2) + (x2 + 1)(y3 + y) + (x3 + x)(y2 + 1) + (x3y + xy3).

Hence for n ≥ 1, we have (using (*) again)

U [A2n−1(x, y)] = U [A(x, y)A2n−1−1(x2, y2)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + U [(y + 1)A2n−1−1(x, y)] + U [(x+ 1)A2n−1−1(x, y)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + 2U [(x+ 1)A2n−1−1(x, y)].

Similarly, we get

U [(x+ 1)A2n−1] = 2U [(y + 1)A2n−1−1] + 2U [(x+ 1)A2n−1−1] = 4U [(x+ 1)A2n−1−1]

U [(x+ 1)(y + 1)A2n−1] = 2U [(xy + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1] = 4U [(x+ y)A2n−1−1]

U [(x+ y)A2n−1] = 2U [(x+ 1)(y + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1].

Here we use the symmetry between x and y, and the identity (xy+ 1) = y(x+ y−1).) It immediately follows
that

U [(x+ 1)(y + 1)A2n+1−1] = 4U [(x+ y)A2n−1]

= 8U [(x+ 1)(y + 1)A2n−1−1] + 8
U [(x+ 1)(y + 1)A2n−1]

4
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for all n ≥ 1, and because x− 4 | (x+ 2)(x− 4) = x2 − 2x− 8,

U [A2n+2−1(x, y)] = 2U [A2n+1−1(x, y)] + 8U [A2n−1(x, y)]

as well. But U [A20−1] = 1, U [A21−1] = 8, and

U [A22−1] = 4U [x+ y] + 8U [x+ 1] = 24,

so the recurrence also holds for n = 0. Solving, we obtain a2n−1 = 5·4n−2(−2)n
3 , so we’re done. �

This problem and solution were proposed by Bobby Shen.

Remark. The number of odd coefficients of (x2 +x+ 1)n is the Jacobsthal sequence (OEIS A001045) (up to
translation). The sequence {an} in the problem also has a (rather empty) OEIS entry. It may be interesting
to investigate the generalization

1∑
j=−1

1∑
k=−1

cj,kfi−1(x+ j, y + k)

for 9-tuples (cj,k) ∈ {0, 1}9. Note that when all cj,k are equal to 1, we get (x2 + x + 1)n(y2 + y + 1)n, and
thus the square of the Jacobsthal sequence.

Even more generally, one may ask the following: “Let f be an integer-coefficient polynomial in n ≥ 1
variables, and p be a prime. For i ≥ 0, let ai denote the number of nonzero coefficients of fp

i−1 (in Fp).
Under what conditions must there always exist an infinite arithmetic progression AP of positive integers for
which {ai : i ∈ AP} satisfies a linear recurrence?”
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G1
Let ABC be a triangle with symmedian point K. Select a point A1 on line BC such that the lines AB, AC,
A1K and BC are the sides of a cyclic quadrilateral. Define B1 and C1 similarly. Prove that A1, B1, and C1

are collinear.

Sammy Luo

Solution 1. LetKA1 intersectAC,AB atAb, Ac respectively, and analogously define the pointsBc, Ba, Ca, Cb.
We claim that AbAcBcBaCaCb is cyclic with center K. It’s well known that KAb = KAc, etc. due to
the antiparallelisms. Now note ∠BcAcK = ∠AAcAb = ∠BCA = ∠BaBcB = ∠KBcAc so we also have
KAc = KBc, etc. So all six segments from K are equal. Now Pascal on AbAcBcBaCaCb gives A1, B1, C1

collinear as wanted. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let DEF be the triangle formed by the tangents to the circumcircle of ABC at A, B, and C.
Let A′, B′, C ′ be EF ∩BC, DF ∩AC, and DE ∩AB, respectively. Since EF is a tangent, it is antiparallel
to BC through A, so A1K ‖ EF . Then A1B = A1K · A

′B
A′E , and A1C = A1K · A

′C
A′F by similar triangles, so

A1B

A1C

B1C

B1A

C1A

C1B
=
A′B ·A′F
A′C ·A′E

· B
′C ·B′D

B′A ·B′F
· C
′A · C ′E

C ′B · C ′D

=
BA′

A′C

CB′

B′A

AC ′

C ′B
· FA

′

A′E

EC ′

C ′D

DB′

B′F
= 1 · 1
= 1

by Menelaus. (DEF is collinear, since it is the symmedian line) Thus by the converse of Menelaus, A1, B1,
and C1 are collinear. �

This second solution was suggested by Kevin Sun.
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G2
ABCD is a cyclic quadrilateral inscribed in the circle ω. Let AB ∩ CD = E, AD ∩ BC = F . Let ω1, ω2

be the circumcircles of AEF,CEF , respectively. Let ω ∩ ω1 = G, ω ∩ ω2 = H. Show that AC,BD,GH are
concurrent.

Yang Liu

Solution. Let AC ∩ BD = Q, AC ∩GH = Q′ (assuming Q 6= Q′), and let the radical center of ω, ω1, and
ω2 be P , so P is the intersection of EF , AG, and HC. By Brokard’s on ABCD, FQE is self-polar, so P
(on EF ) is on the polar of Q. Similarly, by Brokard’s on AGCH, Q′ is on the polar of P . Thus QQ′ is the
polar of P , so AC is the polar of P , which is clearly absurd. �

This problem and solution were proposed by Yang Liu.
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G3
Let A1A2A3 · · ·A2013 be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon,
there exists a point Q 6= P such that AiP

AiQ
is constant for i ∈ {1, 2, 3, · · · , 2013}.

Robin Park

Solution. Let ω be the circumcircle of A1A2A3 · · ·A2013. We just need Q such that ω is the Apollonius circle
of P,Q for some ratio r. Let the center of ω be O, and let PO intersect ω at X,Y . Pick point Q on line XY
such that XP

XQ = Y P
Y Q , i.e. XPY Q is harmonic. Now, ω is a circle with center on PQ that has two points

X,Y with the same ratio of distances to P,Q, so ω is an Apollonius circle of P,Q; the ratio of distances
from any point on ω to P,Q is constant, implying the problem. �

This problem was proposed by Robin Park. This solution was given by Sammy Luo.
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G4
Let ABCD be a quadrilateral inscribed in circle ω. Define E = AA ∩ CD, F = AA ∩ BC, G = BE ∩ ω,
H = BE ∩AD, I = DF ∩ω, and J = DF ∩AB. Prove that GI, HJ , and the B-symmedian are concurrent.

Robin Park

Solution. The main point of this problem is to show that AICG is harmonic. Indeed, because of similar
triangles and the Law of Sines, AI = AD·FI

AF and CI = 2R sin(∠FBI) = 2R · FIFB · sin(∠BID) = FI·BD
BF . So

AI

CI
=
AD

BD
· BF
AB

=
AD ·AB
BD ·AC

=
AG

CG

since it’s symmetric in B,D.

Therefore, AICG is harmonic. Let AA∩CC = K. Note that I,G,K are collinear. By Pascal’s Theorem on
AABGID, we get that K,H, J are collinear. By the Symmedian Lemma, the B-symmedian passes through
K, so HJ, IG, and the B-symmedian all pass through K �

This problem was proposed by Robin Park. This solution was given by Yang Liu.
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G5
Let P be a point in the interior of an acute triangle ABC, and let Q be its isogonal conjugate. Denote by
ωP and ωQ the circumcircles of triangles BPC and BQC, respectively. Suppose the circle with diameter
AP intersects ωP again at M , and line AM intersects ωP again at X. Similarly, suppose the circle with
diameter AQ intersects ωQ again at N , and line AN intersects ωQ again at Y .

Prove that lines MN and XY are parallel. (Here, the points P and Q are isogonal conjugates with respect to
4ABC if the internal angle bisectors of ∠BAC, ∠CBA, and ∠ACB also bisect the angles ∠PAQ, ∠PBQ,
and ∠PCQ, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Sammy Luo

Solution. We are given that P and Q are isogonal conjugates.

Since ∠PMX = ∠QNY = π
2 , we derive

∠PBX = ∠QBY = ∠PCX = ∠QCY =
π

2
.

Thus
∠ABY =

π

2
+ ∠ABQ = ∠PBC +

π

2
= π − ∠CBX,

so X and Y are isogonal with respect to ∠B. However, similar angle chasing gives that they are isogonal with
respect to ∠C. Thus they are isogonal conjugates with respect to ABC. (In particular, ∠BAY = ∠XAC.)

Also, ∠ABY = π − ∠CBX = π − ∠CMX = ∠AMC; hence 4ABY ∼ 4AMC. Similarly, 4ABN ∼
4AXC. Thus AN

AB = AC
AX , and AB

AY = AM
AC . Multiplying, we get that AN

AY = AM
AX which implies the conclusion.

�

This problem was proposed by Sammy Luo. This solution was given by Kevin Sun.

Remark. The points M and N are also isogonal conjugates.

40 http://www.aops.com/Forum/viewtopic.php?t=547196

http://www.aops.com/Forum/viewtopic.php?t=547196
http://www.aops.com/Forum/viewtopic.php?t=547196


G6 Geometry – Solutions ELMO 2014

G6
Let ABCD be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles AOB and COD
meet again at G, while the circumcircles of triangles AOD and BOC meet again at H. Let ω1 denote
the circle passing through G as well as the feet of the perpendiculars from G to AB and CD. Define ω2

analogously as the circle passing through H and the feet of the perpendiculars from H to BC and DA. Show
that the midpoint of GH lies on the radical axis of ω1 and ω2.

Yang Liu

Solution 1. Let F = AB∩CD, E = AD∩BC. Let P be the intersection of the diagonals of the quadrilateral
(AC ∩ BD) Then simple angle chasing gives that APGD is cyclic. (Just show that ∠APD = ∠AGD =
∠AGO + ∠DGO, both which are easy to find).

Similarly, BPGC is cyclic. Now we show that ∠PGO = ∠PGA+ ∠OGA = ∠PDA+ ∠OBA = π/2.

Now by Radical Axis on BPGC,APGD,ABCD, we get that E,P,G are collinear. By Radical Axis on
ABGO,CDGO,ABCD, we get that F,O,G are collinear. Therefore, ∠EGF = π−∠PGO = π/2. Similarly,
∠EHF = π/2. So EFGH is cyclic. Similarly, O,H,E are collinear.

Now, the finish is easy. Let M be the midpoint of GH. And let line MGH hit ω1 at G′, and ω2 at H ′. Note
that ∠EH ′H = π/2 = ∠EGF , and ∠EHH ′ = ∠EFG. So 4EH ′H ∼ 4EGF =⇒ HH ′ = EH·GF

EF = GG′

by symmetry. So MH ·MH ′ = MH · (MH +HH ′) = MG · (MG+GG′) = MG ·MG′, so M has the same
power wrt both circles, so it’s on the radical axis. �

This problem and solution were proposed by Yang Liu.

Solution 2. Let P = AB ∩ CD,Q = AD ∩ BC,R = AC ∩ BD. It’s easy to show by angle chasing that
the Miquel point M of a cyclic ABCD with center O lies on (AOC). So G,H are the Miquel points of
ACBD,ABDC respectively. It’s also well-known (by Brokard and a spiral similarity, see here) that G,H
are then the feet of the altitudes from O to QR,RP respectively (and O is the orthocenter of PQR).

Note that ω1, ω2 are the circles with diameters GP,HQ respectively (due to the right angles). Now, PQGH
is cyclic due to the right angles, so the radical center of (PQGH), ω1, ω2 is GP ∩ HQ = O. Let F be the
midpoint of PQ, M the midpoint of GH, and O1, O2 the centers of ω1, ω2 respectively (so, the midpoints
of PG,QH respectively). Now it suffices to show that OM ⊥ O1O2. But notice that O1, O2 are the feet of
perpendiculars from F to PG,QH respectively, and so the line through O that is perpendicular to O1O2

is isogonal to OF w.r.t. angle POQ. But since GHPQ is cyclic, GH,PQ are antiparallel wrt this angle,
so since OM bisects segment GH, OM is the O-symmedian in 4POQ, and so is isogonal to OF , and thus
perpendicular to O1O2 as wanted. So M is on the radical axis as wanted. �

This second solution was suggested by Sammy Luo.
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G7
Let ABC be a triangle inscribed in circle ω with center O; let ωA be its A-mixtilinear incircle, ωB be its
B-mixtilinear incircle, ωC be its C-mixtilinear incircle, and X be the radical center of ωA, ωB , ωC . Let A′, B′,
C ′ be the points at which ωA, ωB , ωC are tangent to ω. Prove that AA′, BB′, CC ′ and OX are concurrent.

Robin Park

Solution. Let the incenter be I, and the tangency points of the incircle to the 3 sides be TA, TB , TC . Also,
let ωA be tangent to the sides AB,AC at AB , AC , respectively (and similar for the other circles and sides).
Let the midpoints of the arcs be MA,MB ,MC , and the midpoints of TA, I be NA, etc.

It’s pretty well-known that I is the midpoint of AB , AC , and similar. Now we show that the radical axis of
ωB , ωC contains NA and MA. First we show that NA is on the radical axis. Let (X,ω) denote the power of
a point X w.r.t. some circle ω. Let f : R2 → R be the function such that f(P ) = (P, ωB)− (P, ωC). Then
f(I) = −IB2

C + IC2
B and f(TA) = TAB

2
C − TAC2

B , so it follows by Pythagorean Theorem that

f(I) + f(TA) = (IC2
B − TAC2

B)− (IB2
C − TAB2

C) = IT 2
A − IT 2

A = 0.

Since f is linear in P , we have that f(NA) = f(I)+f(TA)
2 = 0. Hence NA lies on the radical axis of ωB and

ωC .

Now we show that MA lies on the radical axis. Let lB be the length of the tangent from MA to the circle
ωB . By Casey’s Theorem on the circles B,MA, C, ωB , we get that

BMA · CBC + CMA ·BBC = lB ·BC =⇒ lB = BMA = CMA

. Similarly, lC = BMA = CMA (tangent from MA to ωC), so MA lies on their radical axis. Now by
simple angle chasing, MAMB ‖ NANB , so the triangles MAMBMC and NANBNC are homothetic, so
MANA,MBNB ,MCNC are concurrent on IO (the lines through their centers). �

This problem was proposed by Robin Park. This solution was given by Yang Liu and Robin Park.
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G8
In triangle ABC with incenter I and circumcenterO, let A′, B′, C ′ be the points of tangency of its circumcircle
with its A,B,C-mixtilinear circles, respectively. Let ωA be the circle through A′ that is tangent to AI at
I, and define ωB , ωC similarly. Prove that ωA, ωB , ωC have a common point X other than I, and that
∠AXO = ∠OXA′.

Sammy Luo

Solution. For the sake of simplicity, let D, E, and F be the points of tangency of the circumcircle to the
mixtilinear incircles.

Invert with respect to the incircle; 4ABC is mapped to 4A′B′C ′. Since the circumcircles of 4A′B′I,
4B′C ′I, and 4C ′A′I concur at I, by a well-known lemma I is the orthocenter of A′B′C ′. Let D′, etc. be
the images of D, etc., under this inversion. We claim that D′ is the reflection of I over the midpoint of
B′C ′. This is clear because A′, B′, C ′, and D′ are concyclic and ID is a symmedian of 4IBC, implying
that ID′ is a median of 4IB′C ′. Therefore D′ is also the antipode of A′ with respect to the circumcircle of
4A′B′C ′. Similarly, E′ and F ′ are the antipodes of B′ and C ′, respectively.

ωA is mapped to a line parallel to A′I passing through D′, and ωB , ωC are mapped similarly. Clearly ω′A,
ω′B , and ω′C concur at the orthocenter of 4D′E′F ′, since B′C ′ ‖ E′F ′, C ′A′ ‖ F ′D′, and A′B′ ‖ D′E′. Let
this point be X ′. Note that ∠X ′A′I = ∠X ′D′I.

We claim that I, X ′, and O are collinear. If P is the circumcenter of 4A′B′C ′, then note that P is the
midpoint of IX ′ because there exists a homothety centered at O with ratio −1 sending4A′B′C ′ to4D′E′F ′
(X ′ is the de Longchamps point of 4A′B′C ′). Hence O, I, and P are collinear and so it follows that I, X ′,
and O are collinear.

Inverting back to our original diagram, we see that ∠X ′A′I = ∠X ′D′I implies that ∠AXO = ∠AXI =
∠IXD = ∠OXD, as desired. �

This problem was proposed by Sammy Luo. This solution was given by Robin Park.
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G9
Let P be a point inside a triangle ABC such that ∠PAC = ∠PCB. Let the projections of P onto BC, CA,
and AB be X,Y, Z respectively. Let O be the circumcenter of 4XY Z, H be the foot of the altitude from
B to AC, N be the midpoint of AC, and T be the point such that TY PO is a parallelogram. Show that
4THN is similar to 4PBC.

Sammy Luo

Solution 1. LetQ be the isogonal conjugate of P with respect to ABC. It’s well-known that O is the midpoint
of PQ. Also, the given angle condition gives ∠BAQ = ∠PAC = ∠PCB = ∠BCP , so 4BPC ∼ 4BQA.
Now let B′, P ′ be the reflections of B,P over AC, respectively, and let T ′ be the midpoint of QP ′. We have
4B′P ′C ∼ 4BPC ∼ 4BQA; furthermore, B′P ′C and BQA are oriented the same way, so their average
(the triangle formed by the midpoints of the segments formed by corresponding points in the triangles),
HT ′N , is directly similar to both of them (for a proof, do some spiral similarity stuff). So it suffices to show
T ′ = T . But OY T ′ is the medial triangle of P ′QP , so OT ′ ‖ PY and Y T ′ ‖ OP , and so T ′ = T and we’re
done. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let Q be the reflection of P over O. It’s quite well-known and easy to show that Q is the isogonal
conjugate of P . Since ∠PAC = ∠PCB, ∠BAQ = ∠PAC = ∠PCB = ∠BCP . Thus 4BPC ∼ 4BQA
Let S = AP ∩ CQ. Since ∠CAP = ∠ABQ, 4CAS is isosceles, so SN ⊥ AC. Let P ′ and Y ′ are the
reflection of P and Y over NS. Since Y P ⊥ AC ⊥ NS, Y PP ′Y ′ is a rectangle. Let T ′ is the reflection of Y
over T . Then P , P ′, Q, and O are the translations of Y , Y ′, T ′, and T under vector Y P . Thus Y ′T ′ ‖ P ′Q,
so NT ‖ P ′Q (since Y ′T ′ is the dilation by 2 from C of NT ).

Thus NT ‖ CQ, so ∠HNT = ∠HCQ = ∠PCB.

Let B′ be the reflection of B over PC, and let D be the foot of the perpendicular from B to PC. Then
4B′PC ∼= 4BPC ∼ 4BQA. If we average these triangles, we get that 4BQA ∼ 4DON , since D, O, and
N , are the midpoints of AC, PQ, and BB′ respectively.

Since NT ‖ CQ, ∠HNT = ∠HCQ = ∠PCB = ∠DNO, so ∠TNO = ∠HND.

Now, we know that ∠CHB = ∠CDB = π
2 , so CHDB is cyclic, so ∠NHD = ∠CHD = π − ∠CBD =

π − (π2 − ∠DCB) = π
2 + ∠PCB = π

2 + ∠ACQ = π
2 + ∠ANT = ∠NTO. Thus 4NHD ∼ 4NTO, so

4THN ∼ 4ODN ∼ 4QBA ∼ 4PBC. �

This second solution was suggested by Kevin Sun.
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G10
We are given triangles ABC and DEF such that D ∈ BC,E ∈ CA,F ∈ AB, AD ⊥ EF,BE ⊥ FD,CF ⊥
DE. Let the circumcenter of DEF be O, and let the circumcircle of DEF intersect BC,CA,AB again at
R,S, T respectively. Prove that the perpendiculars to BC,CA,AB through D,E, F respectively intersect at
a point X, and the lines AR,BS,CT intersect at a point Y , such that O,X, Y are collinear.

Sammy Luo

Solution 1. Start with a triangle DEF , circumcircle ω and orthocenter H. Let DH∩EF = D1, EH∩DF =
E1, FH∩DE = F1. We already showed that from this a unique triangle ABC. We first show that HR ⊥ BC
and similar stuff. To do this, phantom R′, S′, T ′ on �DEF so that HR′ ⊥ R′F and similar for S′, T ′. Let
A′ = DR′ ∩ES′, and similar for B′, C ′. By Radical Axis Theorem on �FT ′HF1,�HS′ED1, ω we get that
A′, D1, H are collinear, so A′D ⊥ EF . Since ABC is unique, R′ = R,S′ = S, T ′ = T . So HR ⊥ BC.

Now we show that FS ∩ ET = K,O,H are collinear. For this part we use complex numbers. Let ω be the
unit circle. Then h = d+ e+ f . First we find s. s satisfies

s− e
s− e

= −s− h
s− h

Using x̄ = 1
x for x on the unit circle, we simplify this to s−(d+e+f)

1
s−( de+df+ef

def )
= se, and now we solve for s to

find s = df(d+f+2e)
de+ef+2df . Now let K ′ = OH ∩ FS. Since K ′ is on OH, we can write it’s complex number as

k′ = p(d + e + f) for a real number p. Now we compute f − s = f − df(d+f+2e)
de+ef+2df = f

(
1− d(d+f+2e)

de+ef+2df

)
=

f
(

(f−d)(d+e)
de+ef+2df

)
. Now its pretty easy to compute that f−s

f−s = −df
2(d+f+2e)
de+ef+2df . So k′−f

k′−f = f−s
f−s = −df

2(d+f+2e)
de+ef+2df .

Rearranging, we get

k′ + k̄′ · df
2(d+ f + 2e)

de+ ef + 2df
= f +

df(d+ f + 2e)

de+ ef + 2df
=⇒

p

(
(d+ e+ f) +

f(d+ f + 2e)(de+ ef + df)

e(de+ ef + 2df)

)
= f

(
d2 + ef + 3de+ 3df

de+ ef + 2df

)
Now, if we be smart with some manipulation (just use distributive property a lot), we can simplify the above
to (after multiplying both sides by de+ ef + 2df),

p

(
def(d+ e+ f) + (e+ f)(d+ e+ f)(de+ ef + df) + ef(de+ ef + df)

ef

)
= (d2 + ef + 3de+ 3df)

. Now it’s easy to see that p will be symmetric in e, f so ET also passes through K ′.

Finally, to finish, use Pappus’s Theorem on BTF,CSE. Let BS ∩ CT = Y,CF ∩ BE = H,FS ∩ ET = K
are collinear. But note that O,H,K are collinear, and that X is the reflection of H over O (since HR ⊥ BC
and similar stuff). So O,X, Y are collinear, as desired. �

This problem and solution were proposed by Sammy Luo.

Solution 2. This is the same as above, except we will provide a synthetic proof that K, O, and H are
collinear. Invert about H. H maps to the incenter of D′E′F ′. S′ is the intersection of the exterior angle
bisector of E′ with (D′E′F ′), and T ′ is defined similarly for F ′. Thus S′, T ′ are midpoints of arcs DEF
and DFE. We want to prove that H, K ′ = (HF ′S′) ∩ (HE′T ′), and the center of D′E′F ′ are collinear.
Let U be the center of this circle and W = F ′S′ ∩ E′T ′. Since F ′S′E′T ′ is cyclic, W lies on HK ′, so it
suffices to show U,W,H are collinear. Let E0, F0 be the other arc midpoints of D′E′, D′F ′. Then Pascal on
DED0E0S

′T ′ gives U,W,H collinear, so we are done. �

This second solution was suggested by Michael Kural.
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G11
Let ABC be a triangle with circumcenter O. Let P be a point inside ABC, so let the points D,E, F be on
BC,AC,AB respectively so that the Miquel point of DEF with respect to ABC is P . Let the reflections
of D,E, F over the midpoints of the sides that they lie on be R,S, T . Let the Miquel point of RST with
respect to the triangle ABC be Q. Show that OP = OQ.

Yang Liu

Solution 1. Let the midpoints of the sides be MA,MB ,MC , respectively.

Lemma 1. Let D,E, F be points on BC,AC,AB respectively. Then there exists a point P such that such
that ∠PFB = ∠PDC = ∠PEA = α if and only if

BF 2 + CD2 +AE2 = BD2 + CE2 +AF 2 + 4K cotα

where K is the area of 4ABC.

Proof. We apply the Law of Cosines to the triangles PFB,PFA,PEA,PEC,PDC,PBD to get the three
equations

PF 2 +BF 2 − 2 · PF ·BF cosα = PD2 +BD2 + 2 · PD ·BD cosα

PE2 +AE2 − 2 · PE ·AE cosα = PF 2 +AF 2 + 2 · PF ·AD cosα

PD2 + CD2 − 2 · PD · CD cosα = PE2 + CE2 + 2 · PE · CE cosα

Summing this and rearranging terms gives

BF 2 +AE2 + CD2 = BD2 + CE2 +AF 2

+ 2 cosα (PF ·BF + PD ·BD + PE ·AE + PF ·AD + PD · CD + PE · CE)

= BD2 + CE2 +AF 2 + 2 cosα · 2K

sinα

= BD2 + CE2 +AF 2 + 4K cotα

For the “if” part, just use that if we fix P,D,E, the there is only one point F on AB such that ∠PFB =
∠PDC = ∠PEA = α. Also, the equation above only has one solution on the side AB as we move F around.
So those 2 points must be the same.

Lemma 2. The reflections of PD,PE,PF over MAO,MBO,MCO concur at Q.

Proof. Since ∠PFB = ∠PDC = ∠PEA (all cyclic quadrilaterals), we can just apply Lemma 1, and do
some easy calculations to see that the reflections concur. So let the common intersection point be Q′. Then
because opposite angles sum to π, Q′SCR,Q′TAS,Q′TBR all are cyclic, so Q′ = Q.

To finish, let QS ∩ PE = Y,QT ∩ PF = Z. By easy angle chasing, PQY Z is cyclic (the points are in
some order). Note that YMB ∩ ZMC = O. But also, since YMB , ZMC bisect the angles ∠EY S,∠FZT
respectively, the meet at one of the arc midpoints of PQ on the circumcircle of PQY Z. So O is the arc
midpoint of PQ on the circle PQY Z, so OP = OQ as claimed. �

This problem and solution were proposed by Yang Liu.

Solution 2. Let MA,MB ,MC be the midpoints of BC,AC,AB.

I guess we should use directed angles. Let X = PD∩QR, Y = PE ∩QS, Z = PF ∩QT . Let α = ∠PDB =
∠PFA = ∠PEC, and β = ∠CRQ = ∠ASQ = ∠BTQ. ∠PXQ = −∠BDP − ∠QRC = α + β. Similarly,
∠PY Q = ∠PZQ = α+ β. Thus P , Q, X, Y , and Z are concyclic.
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Let G = (AEF ) ∩ (AST ), H = (BFD) ∩ (BTR), I = (CDE) ∩ (CRS). ∠PGQ = ∠AGQ − ∠AGP =
∠ATQ − ∠AFP = α + β. Similarly, ∠PHQ = ∠PIQ = α + β, so G, H, and I are on the circle, so
P ,Q,G,H,I,X,Y ,Z are concyclic.

Now, I claim that AG, BH, and CI concur. Consider sinBAG
sinGAC = sinFAG

sinGAE = sinFEG
sinGFE = FG

GE . Since 4FGT ∼
4EGS (due to cyclic quads), FG

GE = FT
ES . Thus sinBAG

sinGAC
sinACI
sin ICB

sinCBH
sinHBA = FT

ES
ES
DR

DR
FT = 1, so by Ceva’s

theorem, AG, BH, and CI concur.

Also, since 4FGE ∼ 4TGS, spiral similarity gives that 4FGE ∼ 4TGS ∼MCGMB . Then AMCGOMB

is cyclic.

Now, let J = AG∩BH∩CI. Since ∠AMCO = π
2 , ∠AGO = π

2 , so ∠JGO = π
2 . Similarly, ∠JHO = ∠JIO =

π
2 , so J , O, G, H, and I are cyclic with diameter JO. However, from earlier we have that the circumcircle
of GHI contains points P,Q,X, Y, Z. Thus GHIJOPQXY Z is a cyclic decagon with diameter OJ .

Then ∠PDB = ∠PFA = ∠PGA = ∠PGJ = ∠PXJ , so BC ‖ JX. Since OJ is a diameter, OX ⊥ XJ , and
since MA is a midpoint, OMA ⊥ BC. However, BC ‖ JX, so MA is on OX. However, DMA = RMA, so
4DMAX ∼= 4RMAX, so ∠DXMA = ∠MAXR, so ∠PXO = ∠OXQ, so ∠OPQ = −∠OQP , which means
that OP = OQ. �

This second solution was suggested by Kevin Sun.

Solution 3. Let AQ meet APEF at L, BQ meet BPDF at K, CQ meet CPDE at G. Let the midpoint of
K,Q be M , and the midpoints of the sides by MA,MB ,MC . Note that KDF ∼ QRT since

∠KDF = ∠KBF = ∠QBT = ∠QRT

and similarly ∠KFD = ∠QTR, so averaging these two triangles yields another similar triangle MMAMC .
Then ∠MCMMA = ∠DKF = π − ∠DBF , so BMCMMA is cyclic. But clearly this quadrilateral has
diameter BO, so OM ⊥ BM . Thus OQ = OK(= OL = OG) by similar arguments. We claim PKQG is
cyclic. Indeed,

∠KPG+ ∠KQG = 2π − ∠KPD − ∠GPD + ∠KQG = ∠BQC + ∠QCB + ∠CBQ = π

So this quadrilateral is cyclic. Then P lies on cyclic QKLG with center O, so we are done. �

This third solution was suggested by Michael Kural.

Solution 4. Let A′, B′, C ′ be the antipodes of A,B,C, respectively, in (AEF ), (BFD), (CDE) respectively;
let A′′, B′′, C ′′ be the antipodes of A,B,C, respectively, in (AST ), (BTR), (CRS), respectively. Now, B′, C ′

are both on the perpendicular to BC through D, and so forth. So note that B′, B′′ are reflections about O,
since the feet from B′, B′′ to BC,BA are both symmetric about the corresponding midpoints.

Also, note (using directed angles): ∠PB′B = ∠PFB = ∠PFA = ∠PEA = ∠PA′A = ∠PEC = ∠PDC =
∠PC ′C and ∠BPB′ = ∠APA′ = ∠CPC ′ = 90◦ so BB′P,CC ′P,AA′P are all directly similar; thus P is
the center of a spiral similarity (with angle 90◦) from A′B′C ′ to ABC, which we will call SP . Similarly, Q
is the center of a spiral similarity (with angle 90◦) from ABC to A′′B′′C ′′, which we call SQ.

Now consider the composition SQSP (SP is applied first). This maps A′B′C ′ to A′′B′′C ′′. But these two
triangles are reflections of each other about O, so O is at the same position relative to both (in fact, it’s
their center of rotation!); thus SQSP maps O to itself. In particular, since A′B′C ′, A′′B′′C ′′ are congruent,
SP , SQ must have scale factors that are multiplicative inverses; say the scale factor of SP is r.

So let O′ be the image of O under SP . So OPO′ = 90◦ and O′QO = 90◦; O′P
OP = r = O′Q

OQ . This is enough

to show OPO′, OQO′ congruent, so OP = OQ as desired. �

This fourth solution was suggested by Sammy Luo.

Remark. This is quite similar in flavor to IMO Shortlist 2012, Problem G6, and a comment given by user
proglote in that thread can be used to solve this problem.

Remark. In fact, a further generalization of this problem of this problem is possible. Let P a point, and
XY Z be its pedal triangle. A1, B1, and C1 are points on BC, AC, and AB, and A2, B2, and C2 are their
reflections over X, Y , and Z, If the Miquel point of A1, B1, C1 is P1 and the Miquel point of A2, B2, C2 is
P2, then PP1 = PP2.
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G12
Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

Solution 1. Let J be the second intersection of ω and AC, and X be the intersection of BF and AC. It’s
well-known that DJFC is harmonic; perspectivity wrt B implies AJXC is also harmonic. Then AJ

JX =
AC
CX =⇒ (AJ)(CX) = (AC)(JX). This can be rearranged to get

(AJ)(CX) = (AJ + JX +XC)(JX) =⇒ 2(AJ)(CX) = (JX +AJ)(JX +XC) = (AX)(CJ),

so (
AX

XC

)(
CJ

JA

)
= 2.

But CJ
JA = AD

DB , so by Ceva’s we have BH = 2HC, as desired. �

Solution 2. Let J be the second intersection of ω and AC. It’s well-known that DJFC is harmonic; thus
we have (DJ)(FC) = (JF )(DC). By Ptolemy’s, this means

(DF )(JC) = (DJ)(FC) + (JF )(DC) = 2(JD)(CF ) =⇒
(
JC

JD

)(
FD

FC

)
= 2.

Yet JC = DB by symmetry, so this becomes

2 =

(
DB

JD

)(
FD

FC

)
=

(
sinDJB

sin JBD

)(
sinFCD

sinFDC

)
=

(
sinDCB

sinACD

)(
sinFBA

sinCBF

)
.

Thus by (trig) Ceva’s we have sinBAH
sinCAH = 2, and since AB = AC it follows that BH = 2HC, as desired. �

This problem and its solutions were proposed by David Stoner.
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G13
Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

Solution. Let α be the half-angles of 4ABC, r inradius, and u, v, w tangent lengths to the incircle. Let
T = MP ∩ NQ so that I is the incenter of 4MNT . Then ∠IPT = ∠IXY = α = ∠IY X = ∠IQT gives
4TIP ∼ 4TIQ, so P, I,Q are collinear iff ∠TIP = 90◦ iff ∠MTN = 180◦ − 2α iff ∠MIN = 180◦ − α iff
MI2 = MX ·MN . First suppose I is the center of γ. Since A, I are symmetric about XY , ∠MAN = ∠MIN .
But P, I,Q are collinear iff ∠MIN = 180◦−α, so because arcs AN and BM sum to 90◦, P, I,Q are collinear
iff arcs BM , MA have the same measure. Let M ′ = CI ∩ ω; then ∠BM ′I = ∠BM ′C = 90◦ − ∠BXI,
so M ′XIBZ is cyclic and ∠M ′XB = ∠M ′IB = 180◦ − ∠BIC = 45◦ = ∠AXY , as desired. (There
are many other ways to finish as well.) Conversely, if P, I,Q are collinear, then by power of a point,
m(m+2t) = MI2−r2 = MX ·MN−r2 = m(m+2t+n)−r2, so mn = r2. But we also have m(n+2t) = uv
and n(m+ 2t) = uw, so

r2 = mn =
uv − r2

2t

uw − r2

2t
=

uv(u+v)
u+v+w

2r cosα

uw(u+w)
u+v+w

2r cosα
=

r2

4 cos2 α

(u+ v)(u+ w)

vw
.

Simplifying using cos2 α = u2

u2+r2 = u(u+v+w)
(u+v)(u+w) , we get

0 = (u+ v)2(u+ w)2 − 4uvw(u+ v + w) = (u(u+ v + w)− vw)2,

which clearly implies (u+ v)2 + (u+ w)2 = (v + w)2, as desired. �

This problem was proposed by David Stoner. This solution was given by Victor Wang.

49 http://www.aops.com/Forum/viewtopic.php?t=513223

http://www.aops.com/Forum/viewtopic.php?t=513223
http://www.aops.com/Forum/viewtopic.php?t=513223


N1 Number Theory – Solutions ELMO 2014

N1
Does there exist a strictly increasing infinite sequence of perfect squares a1, a2, a3, ... such that for all k ∈ Z+

we have that 13k|ak + 1?

Jesse Zhang

Solution. We have that 5 is a solution to x2 + 1 = 0 mod 13. Now assume that we have a solution xk to
f(x) = x2 + 1 = 0 mod 13k. Note that f ′(x) = 2x 6= 0 mod 13 clearly, so by Hensel there is a solution
xk+1 to f(x) = x2 + 1 = 0 mod 13k+1. Then just add 13k+1 to xk+1 to make it strictly larger than xk, and
we’re done. �

This problem was proposed by Jesse Zhang. This solution was given by Michael Kural.
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N2 Number Theory – Solutions ELMO 2014

N2
Define the Fibanocci sequence recursively by F1 = 1, F2 = 1 and Fi+2 = Fi + Fi+1 for all i. Prove that for
all integers b, c > 1, there exists an integer n such that the sum of the digits of Fn when written in base b is
greater than c.

Ryan Alweiss

Solution. It’s well known that if N is a positive integer multiple of bk − 1, then the base b digital sum of N
is at least k(b− 1). Now just apply the lemma with k sufficiently large and pick n with bk − 1 | Fn. �

This problem and solution were proposed by Ryan Alweiss.
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N3
Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a
polynomial P , of degree n and with rational coefficients, such that the following property holds: exactly one
of

P (k)

tk
and

P (k)

tk+1

is an integer for each k = 0, 1, ...,m.

Michael Kural

Answer. The maximal value of m is n.

Solution 1. Note that if tk+1 ‖ P (k + 1) and tk ‖ P (k), then tk ‖ P (k + 1) − P (k). A simple induction on
degP then establishes an upper bound of n. To achieve this, simply put P (k) = tk for each 0 ≤ k ≤ n. �

This problem and solution were proposed by Michael Kural.

Solution 2. By Lagrange Interpolation, we can find a polynomial satisfying P (k) = tk for 0 ≤ k ≤ n
with rational coefficients. By Newtonian Interpolation, P (n+ 1) =

∑n
i=0

(
n
i

)
P (i)(−1)n−i. Taking (mod t),

P (n+ 1) = (−1)n · P (0) 6= 0 (mod t). �

This second solution was suggested by Yang Liu.
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N4 Number Theory – Solutions ELMO 2014

N4
Let N denote the set of positive integers, and for a function f , let fk(n) denote the function f applied k
times. Call a function f : N→ N saturated if

ff
f(n)(n)(n) = n

for every positive integer n. Find all positive integers m for which the following holds: every saturated
function f satisfies f2014(m) = m.

Evan Chen

Answer. All m dividing 2014; that is, {1, 2, 19, 38, 53, 106, 1007, 2014}.
Solution. First, it is easy to see that f is both surjective and injective, so f is a permutation of the positive
integers. We claim that the functions f which satisfy the property are precisely those functions which satisfy
fn(n) = n for every n.

For each integer n, let ord(n) denote the smallest integer k such that fk(n). These orders exist since

ff
f(n)(n)(n) = n, so ord(n) ≤ ff(n)(n); in fact we actually have

ord(n) | ff(n)(n) (8.1)

as a consequence of the division algorithm.

Since f is a permutation, it is immediate that ord(n) = ord(f(n)) for every n; this implies easily that
ord(n) = ord

(
fk(n)

)
for every integer k. In particular, ord(n) = ord

(
ff(n)−1(n)

)
. But then, applying (8.1)

to ff(n)−1(n) gives

ord(n) = ord
(
ff(n)−1(n)

)
| ff(f

f(n)−1(n))
(
ff(n)−1(n)

)
= ff

f(n)(n)+f(n)−1(n)

= ff(n)−1
(
ff

f(n)(n)(n)
)

= ff(n)−1(n)

Inductively, then, we are able to show that ord(n) | ff(n)−k(n) for every integer k; in particular, ord(n) |
f0(n) = n, which implies that fn(n) = n. To see that this is actually sufficient, simply note that ord(n) =
ord(f(n)) = · · · , which implies that ord(n) | fk(n) for every k.

In particular, if m | 2014, then ord(m) | m | 2014 and f2014(m) = m. The construction for the other values
of m (showing that they are not forced) is left as an easy exercise. �

This problem and solution were proposed by Evan Chen.

Remark. There are many ways to express the same ideas. For instance, the following approach (“unraveling
indices”) also works: It’s not hard to show that f is a bijection with finite cycles (when viewed as a
permutation). If C = (n0, n1, . . . , n`−1) is one such cycle with f(ni) = ni+1 for all i (extending indices mod

`), then ff
f(n)(n)(n) = n holds on C iff ` | ff(ni)(ni) = ni+ni+1 for all i. But ` | nj =⇒ ` | nj−1+nj = nj−1

for fixed j, so the latter condition holds iff ` | ni for all i. Thus f2014(n) = n is forced unless and only unless
n - 2014.
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N5
Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a positive integer.
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.

Matthew Babbitt

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 + · · · + an. Then
for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show that a0− (a1 +
· · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong induction on N .
The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one of the
inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with 3 ≤ N ′ < N and then
apply the inductive hypothesis; the construction for N ′ cannot use any of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely natural, it is not
immediately obvious that one should consider 3 ≤ N − (x1 + · · · + xk) < xk + 3 rather than the stronger
bound 3 ≤ N − (x1 + · · ·+xk) < xk. In particular, the solution method above does not work if one attempts
to get the latter.
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N6
Show that the numerator of

2p−1

p+ 1
−

(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
is a multiple of p3 for any odd prime p.

Yang Liu

Solution. Remark (1−kp)2(1+2pk+3p2k2) ≡ 3k4p4−4k3p3+1 ≡ 1 (mod p3), so 1
(1−kp)2 ≡ (1+2pk+3p2k2)

(mod p3). Thus(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
≡

p−1∑
k=0

(
p− 1

k

)
(1 + 2pk + 3p2k2) (mod p3)

=

p−1∑
k=0

(
p− 1

k

)
+

p−1∑
k=0

2pk

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= 2p−1 +

p−1∑
k=0

pk

(
p− 1

k

)
+

p−1∑
k=0

p(p− 1− k)

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= 2p−1 +

p−1∑
k=0

p(p− 1)

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= (p2 − p+ 1)2p−1 +

p−1∑
k=0

3p2k2
(
p− 1

k

)

≡ (p2 − p+ 1)2p−1 +

p−1∑
k=0

3p2k2(−1)k (mod p3)

≡ (p2 − p+ 1)2p−1 + 3p3
p− 1

2
(mod p3)

≡ 2p−1

p+ 1
(mod p3)

�

This problem and solution were proposed by Yang Liu.

55 http://www.aops.com/Forum/viewtopic.php?t=547730

http://www.aops.com/Forum/viewtopic.php?t=547730
http://www.aops.com/Forum/viewtopic.php?t=547730


N7 Number Theory – Solutions ELMO 2014

N7
Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then
n+ c divides an + bn + n.

Evan Chen

Answer. (a, b, c) = (1, 1, 2).

Solution. Let p be an arbitrary prime such that p ≥ 2011 · max{abc, 2013}. By the Chinese Remainder
Theorem it is possible to select an integer n satisfying the following properties:

n ≡ −c (mod p)

n ≡ −1 (mod p− 1)

n ≡ −1 (mod q)

for all primes q ≤ 2011 not dividing p − 1. This will guarantee that n is not divisible by any integer less
than 2013. Upon selecting this n, we find that

p | n+ c | an + bn + n

which implies that
an + bn ≡ c (mod p)

But n ≡ −1 (mod p− 1); hence an ≡ a−1 (mod p) by Euler’s Little Theorem. Hence we may write

p | ab(a−1 + b−1 − c) = a+ b− abc.

But since p is large, this is only possible if a+ b− abc is zero. The only triples of positive integers with that
property are (a, b, c) = (2, 2, 1) and (a, b, c) = (1, 1, 2). One can check that of these, only (a, b, c) = (1, 1, 2)
is a valid solution. �

This problem and solution were proposed by Evan Chen.
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N8 Number Theory – Solutions ELMO 2014

N8
Let N denote the set of positive integers. Find all functions f : N→ N such that:

(i) The greatest common divisor of the sequence f(1), f(2), . . . is 1.

(ii) For all sufficiently large integers n, we have f(n) 6= 1 and

f(a)n | f(a+ b)a
n−1

− f(b)a
n−1

for all positive integers a and b.

Yang Liu

Answer. The only such function is the constant function f(b) = b.

Solution. Let (ii) hold for n ≥ C. First we claim f(a) | a for all a. Let p be any prime dividing f(a). Choose
b so that p - f(a+ b), f(b) (possible via (i)). So

p | f(a+ b)a
C−1

− f(b)a
C−1

.

Now let
υp

(
f(a+ b)a

C−1

− f(b)a
C−1
)

= k.

By the divisibility for all n > C,

nυp(f(a)) ≤ υp
(
f(a+ b)a

n−1

− f(b)a
n−1
)

= k + (n− C)υp(a)

by Lifting the Exponent. Now it’s clear that υp(f(a)) ≤ υp(a), so f(a) | a.

Note that for sufficiently large primes p since f(p) | p, and then f(p) 6= 1, f(p) = p. Now plug in a = p, and
by Fermat’s Little Theorem, p | f(b+ p)− f(b) for all b and sufficiently large p. In fact, this then gives that

p | f(b+ kp)− f(b)

for any integer k. Now choose p > b. If f(b+ p) 6= b+ p, then

f(b+ p) ≤ b+ p

2
< p.

But p | f(b + p) − f(b) for all large enough p. Therefore f(b + p) = f(b) for all sufficiently large primes p.
By our condition, f(b) 6= 1 now, so take a prime q | f(b). Then q | b and therefore, q | f(b + p) − f(p) =
f(b) − f(p) =⇒ q | p for any sufficiently large p. So q = 1, contradiction. So f(b + p) = b + p. Since
0 < f(b+ p)− f(b) = b+ p− f(b) < b+ p < 2p and p | f(b+ p)− f(b), f(b) = b for all b. You can check that
this solution works with LTE. �

This problem and solution were proposed by Yang Liu.
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N11
Let p be a prime satisfying p2 | 2p−1 − 1, and let n be a positive integer. Define

f(x) =
(x− 1)p

n − (xp
n − 1)

p(x− 1)
.

Find the largest positive integer N such that there exist polynomials g(x), h(x) with integer coefficients and
an integer r satisfying f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

Answer. The largest possible N is 2pn−1.

Solution 1. Let F (x) = x
1 + · · ·+ xp−1

p−1 .

By standard methods we can show that (x − 1)p
n − (xp

n−1 − 1)p has all coefficients divisible by p2. But
p2 | 2p−1 − 1 means p is odd, so working in Fp, we have

(x− 1)f(x) =

p−1∑
k=1

1

p

(
p

k

)
(−1)k−1xp

n−1k =

p−1∑
k=1

(
p− 1

k − 1

)
(−1)k−1

xp
n−1k

k

=

p−1∑
k=1

xp
n−1k

kpn−1 = F (x)p
n−1

,

where we use Fermat’s little theorem,
(
p−1
k−1
)
≡ (−1)k−1 (mod p) for k = 1, 2, . . . , p− 1, and the well-known

fact that P (xp)− P (x)p has all coefficients divisible by p for any polynomial P with integer coefficients.

However, it is easy to verify that p2 | 2p−1 − 1 if and only if p | F (−1), i.e. −1 is a root of F in Fp.
Furthermore, F ′(x) = xp−1−1

x−1 = (x+ 1)(x+ 2) · · · (x+ p− 2) in Fp, so −1 is a root of F with multiplicity 2;

hence N ≥ 2pn−1. On the other hand, since F ′ has no double roots, F has no integer roots with multiplicity
greater than 2. In particular, N ≤ 2pn−1 (note that the multiplicity of 1 is in fact pn−1 − 1, since F (1) = 0
by Wolstenholme’s theorem but 1 is not a root of F ′). �

This problem and solution were proposed by Victor Wang.

Remark. The rth derivative of a polynomial P evaluated at 1 is simply the coefficient [(x− 1)r]P (i.e. the
coefficient of (x− 1)r when P is written as a polynomial in x− 1) divided by r!.

Solution 2. This is asking to find the greatest multiplicity of an integer root of f modulo p; I claim the
answer is 2pn−1.

First, we shift x by 1 and take the negative (since this doesn’t change the greatest multiplicity) for conve-

nience, redefining f as f(x) = (x+1)p
n
−xpn−1
px .

Now, we expand this. We can show, by writing out and cancelling, that p1 fully divides
(
pn

k

)
only when pn−1

divides k; thus, we can ignore all terms except the ones with degree divisible by pn−1 (since they still go

away when taking it mod p), leaving f(x) = 1
px (
(
pn

pn−1

)
xp

n−pn−1

+ · · ·+
(

pn

pn−pn−1

)
xp

n−1

).

We can also show, by writing out/cancelling, that 1
p

(
pn

kpn−1

)
= 1

p

(
p
k

)
modulo p. Simplifying using this, the

expression above becomes f(x) = 1
px (
(
p
1

)
xp

n−pn−1

+ · · ·+
(
p
p−1
)
xp

n−1

) = 1
px ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Now, we ignore the 1/x for the moment (all it does is reduce the multiplicity of the root at x = 0 by 1) and

just look at the rest, P (x) = 1
p ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Substituting y = xp
n−1

, this becomes 1
p ((y + 1)p − (yp + 1)); since 1

p

(
p
k

)
= 1

k

(
p−1
k−1
)
, this is equal to P (x) =

1
1

(
p−1
0

)
yp−1 + · · ·+ 1

p−1
(
p−1
p−2
)
y. (We work mod p now; the ps can be cancelled before modding out.)
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N11 Number Theory – Solutions ELMO 2014

We now show that P (x) has no integer roots of multiplicity greater than 2, by considering the root multi-
plicities of y times its reversal, or Q(x) = 1

p−1
(
p−1
p−2
)
yp−1 + · · ·+ 1

1

(
p−1
0

)
y.

Note that some polynomial P has a root of multiplicity m at x iff P and its first m − 1 derivatives all
have zeroes at x. (We’re using the formal derivatives here - we can prove this algebraically over Z mod p, if
m < p.) The derivative of Q is

(
p−1
p−2
)
yp−2+ · · ·+

(
p−1
0

)
, or (y+1)p−1−yp−1, which has as a root every residue

except 0 and −1 by Fermat’s little theorem; the second derivative is a constant multiple of (y+1)p−2−yp−2,
which has no integer roots by Fermat’s little theorem and unique inverses. Therefore, no integer root of Q
has multiplicity greater than 2; we know that the factorization of a polynomial’s reverse is just the reverse of
its factorization, and integers have inverses mod p, so P (x) doesn’t have integer roots of multiplicity greater
than 2 either.

Factoring P (x) completely in y (over some extension of Fp), we know that two distinct factors can’t share a
root; thus, at most 2 factors have any given integer root, and since their degrees (in x) are each pn−1, this
means no integer root has multiplicity greater than 2pn−1.

However, we see that y = 1 is a double root of P . This is because plugging in gives P (1) = 1
p ((1 + 1)p −

(1p + 1)) = 1
p (2p − 2); by the condition, p2 divides 2p − 2, so this is zero mod p. Since 1 is its own inverse,

it’s a root of Q as well, and it’s a root of Q’s derivative so it’s a double root (so (y − 1)2 is part of Q’s
factorization). Reversing, (y − 1)2 is part of P ’s factorization as well.

Applying a well-known fact, y − 1 = xp
n−1 − 1 = (x− 1)p

n−1

modulo p, so 1 is a root of P with multiplicity
2pn−1.

Since adding back in the factor of 1/x doesn’t change this multiplicity, our answer is therefore 2pn−1. �

This second solution was suggested by Alex Smith.
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Ex-Lincoln Math Olympiad
17th ELMO

Pittsburgh, PA

Year: 2015

Day: 1

June 20, 2015
1:00 PM – 6:00 PM

Problem 1. Define the sequence a1 = 2 and an = 2an−1 + 2 for all integers n ≥ 2. Prove
that an−1 divides an for all integers n ≥ 2.

Problem 2. Let m, n, and x be positive integers. Prove that

n∑
i=1

min
(⌊x

i

⌋
,m
)

=
m∑
i=1

min
(⌊x

i

⌋
, n
)
.

Problem 3. Let ω be a circle and C a point outside it; distinct points A and B are selected
on ω so that CA and CB are tangent to ω. Let X be the reflection of A across the point
B, and denote by γ the circumcircle of triangle BXC. Suppose γ and ω meet at D 6= B
and line CD intersects ω at E 6= D. Prove that line EX is tangent to the circle γ.

Problem 4. Let a > 1 be a positive integer. Prove that for some nonnegative integer n,
the number 22

n
+ a is not prime.

Problem 5. Let m,n, k > 1 be positive integers. For a set S of positive integers, define
S(i, j) for i < j to be the number of elements in S strictly between i and j. We say two
sets (X,Y ) are a fat pair if

X(i, j) ≡ Y (i, j) (mod n)

for every i, j ∈ X ∩ Y . (In particular, if |X ∩ Y | < 2 then (X,Y ) is fat.)
If there are m distinct sets of k positive integers such that no two form a fat pair, show

that m < nk−1.

Time limit: 5 hours.
Each problem is worth 7 points.



17th Ex-Lincoln Math Olympiad

ELMO 2015

Pittsburgh, PA

OFFICIAL SOLUTIONS

1. Define the sequence a1 = 2 and an = 2an−1 + 2 for all integers n ≥ 2. Prove that an−1
divides an for all integers n ≥ 2.

Proposed by Sam Korsky.

Solution. We prove by induction that both an−1 | an and an−1 − 1 | an − 1 are true
for all positive integers n ≥ 2. We have 1 | 5 and 2 | 6 so the base case works.

For the inductive step k → k + 1, note that

ak−1 | ak =⇒ 2ak−1 + 1 | 2ak + 1 =⇒ ak − 1 | ak+1 − 1

ak−1 − 1 | ak − 1 =⇒ 2ak−1 + 2 | 2ak + 2 =⇒ ak | ak+1

So the induction is complete and the result follows. (The above works because x+ 1 |
xk + 1 for odd k, and 2 | an but 4 - an for all n.) �

This problem and solution were proposed by Sam Korsky.

2. Let m, n, and x be positive integers. Prove that

n∑
i=1

min
(⌊x

i

⌋
,m
)

=
m∑
i=1

min
(⌊x

i

⌋
, n
)
.

Proposed by Yang Liu.

Solution 1. Both sides count the number of entries of an m× n multiplication table
that are at most x, as desired. �

This problem and solution were proposed by Yang Liu.

Solution 2. We induct on x for fixed m and n. Note that it is trivial for x = 0
because both sides are 0. Now, say it is true for x − 1, and let’s prove it is true for
x. Note that the left increments for every value i ≤ n that has x

i ≤ m with i dividing
x. So it increments by 1 for every divisor of x that is at least x

n and at most m (the
x
i ). The RHS increments by 1 for every divisor of x that is at least x

m and at most n
similarly. These are the same because r dividing x is in one category if and only if x

r
dividing x is in the other. So we have a bijection, both increase by the same amount,
and we are done by induction. �

This second solution was suggested by Ryan Alweiss.
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3. Let ω be a circle and C a point outside it; distinct points A and B are selected on ω
so that CA and CB are tangent to ω. Let X be the reflection of A across the point B,
and denote by γ the circumcircle of triangle BXC. Suppose γ and ω meet at D 6= B
and line CD intersects ω at E 6= D. Prove that line EX is tangent to the circle γ.

Proposed by David Stoner.

Solution 1. From ∠CXB = π − ∠CDB = ∠EAB, we find AE ‖ CX. Let T ∈ CX
such that AEXT is a parallelogram; then ∠BTC = π − ∠AEB = ∠XBC, and
it follows that 4BTC ∼ 4XBC ⇒ (CX)(CT ) = (CB)2 = (CA)2 ⇒ 4ATC ∼
4XAC. Therefore ∠CAT = ∠CXA = ∠CBT , so ACTB is cyclic. Finally, ∠EXB =
∠BAT = ∠BCX, and it follows that EX is tangent to ω as desired. �

This problem and solution were proposed by David Stoner.

Solution 2.

A

B

C

X

D E

Y

Using directed angles, ∠BXC = ∠BDC = ∠BDE = ∠BAE so AE ‖ CX. Construct
parallelogram AYXC. As ∠BEY = ∠BEA = ∠BAC = ∠BXY , quadrilateral
BEXY is cyclic. Thus ∠XCB = ∠BY E = ∠BXE as desired. �

This second solution was suggested by Viswanath and mathdebam.

Solution 3. First note that ∠ECX = ∠DBA = ∠CEA which implies that EA ‖
CX. Now let F be the second intersection of line AD with γ. We have that ∠DFX =
∠ECX = ∠AEC = ∠DAC so FC ‖ AX. Therefore projecting points C,D,B,X from
F onto line AX yields that quadrilateral CDBX is harmonic. Let G = AB ∩ ED.
Since line AB is the polar of C with respect to ω we have that (C,G;D,E) = −1 so
by projecting C,D,G,E from X to circle γ we have that E must go to X so EX is
tangent to ω′ as desired. �

This third solution was suggested by Sam Korsky.

Solution 4. Here is a solution with no auxiliary points at all. By angle chasing,
4XAC ∼ 4AEB, whence

AX

AE
=
CX

AB
=
CX

BC
.
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Since ∠BXC = ∠EAX also, we get 4BXC ∼ 4EAX, thus ∠BXE = ∠BCX as
desired. �

This fourth solution was suggested by linqaszayi.

Remark. An approach with complex numbers is also possible. Setting ω to be the
unit circle, one can derive

d =
b(2b+ 3a)

2a+ 3b
and e =

b(a+ 2b)

2a+ b
.

In fact, if one notices that AE ‖ CX then the coordinates of D can be bypassed, and
point E can be obtained directly.

It is even possible to approach the problem with Cartesian coordinates or by using
barycentric coordinates on 4ABC.

4. Let a > 1 be a positive integer. Prove that for some nonnegative integer n, the number
22

n
+ a is not prime.

Proposed by Jack Gurev.

Solution. Let m = v2(a− 1). Assume that 22
m

+ a = p is prime. It suffices to show
there exists n > m such that 22

n − 22
m

is divisible by p.

Since
22

n − 22
m

= 22
m
((

(22
m)2n−m−1 − 1

)
we can let

n = m+ φ

(
p− 1

2m

)
which implies the conclusion. �

This problem was proposed by Jack Gurev. This solution was given by Sam Korsky.

5. Let m,n, k > 1 be positive integers. For a set S of positive integers, define S(i, j) for
i < j to be the number of elements in S strictly between i and j. We say two sets
(X,Y ) are a fat pair if

X(i, j) ≡ Y (i, j) (mod n)

for every i, j ∈ X ∩ Y . (In particular, if |X ∩ Y | < 2 then (X,Y ) is fat.)

If there are m distinct sets of k positive integers such that no two form a fat pair,
show that m < nk−1.

Proposed by Allen Liu.

Solution. Let the union of the sets be T = {a1, a2, . . . , a`} where the elements of
T are arranged in increasing order. For each element of T , color it randomly with
one of n colors (1, 2, . . . , n). We say a set is good if its elements when arranged in
increasing order have colors a, a + 1, . . . , a + k − 1 taken mod n where a can be any
color. Now the fact that there is no fat pair means that only one good set can exist
in each coloring. The probability that a good set exists is 1

nk−1 so we are done. (The

3



inequality is strict since we could end up coloring all elements of T the same color.)
�

This problem and solution were proposed by Allen Liu.
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Elmo Lives Mostly Outside
18th ELMO

Pittsburgh, PA

Year: 2016

Day: 1

Saturday, June 18, 2016
1:15PM — 5:45PM

Problem 1. Cookie Monster says a positive integer n is crunchy if there exist 2n real
numbers x1, x2, . . . , x2n, not all equal, such that the sum of any n of the xi’s is equal to the
product of the other n of the xi’s. Help Cookie Monster determine all crunchy integers.

Problem 2. Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle
ABC and a point D such that DB and DC are tangent to the circumcircle of ABC. Let
B′ be the reflection of B over AC and C ′ be the reflection of C over AB. If O is the
circumcenter of DB′C ′, help Oscar prove that AO is perpendicular to BC.

Problem 3. In a Cartesian coordinate plane, call a rectangle standard if all of its sides
are parallel to the x- and y- axes, and call a set of points nice if no two of them have the
same x- or y- coordinates. First, Bert chooses a nice set B of 2016 points in the coordinate
plane. To mess with Bert, Ernie then chooses a set E of n points in the coordinate plane
such that B ∪ E is a nice set with 2016 + n points. Bert returns and then miraculously
notices that there does not exist a standard rectangle that contains at least two points
in B and no points in E in its interior. For a given nice set B that Bert chooses, define
f(B) as the smallest positive integer n such that Ernie can find a nice set E of size n with
the aforementioned properties. Help Bert determine the minimum and maximum possible
values of f(B).

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



Elmo Lives Mostly Outside
18th ELMO

Pittsburgh, PA

Year: 2016

Day: 2

Sunday, June 19, 2016
1:15PM — 5:45PM

Problem 4. Big Bird has a polynomial P with integer coefficients such that n divides
P (2n) for every positive integer n. Prove that Big Bird’s polynomial must be the zero
polynomial.

Problem 5. Elmo is drawing with colored chalk on a sidewalk outside. He first marks
a set S of n > 1 collinear points. Then, for every unordered pair of points {X,Y } in S,
Elmo draws the circle with diameter XY so that each pair of circles which intersect at two
distinct points are drawn in different colors. Count von Count then wishes to count the
number of colors Elmo used. In terms of n, what is the minimum number of colors Elmo
could have used?

Problem 6. Elmo is now learning olympiad geometry. In a triangle ABC with AB 6= AC,
let its incircle be tangent to sides BC, CA, and AB at D, E, and F , respectively. The
internal angle bisector of ∠BAC intersects lines DE and DF at X and Y , respectively.
Let S and T be distinct points on side BC such that ∠XSY = ∠XTY = 90◦. Finally, let
γ be the circumcircle of 4AST .

(a) Help Elmo show that γ is tangent to the circumcircle of 4ABC.

(b) Help Elmo show that γ is also tangent to the incircle of 4ABC.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



18th Elmo Lives Mostly Outside

ELMO 2016

Pittsburgh, PA

OFFICIAL SOLUTIONS

1. Cookie Monster says a positive integer n is crunchy if there exist 2n real numbers
x1, x2, . . . , x2n, not all equal, such that the sum of any n of the xi’s is equal to the
product of the other n of the xi’s. Help Cookie Monster determine all crunchy integers.

Proposed by Yannick Yao.

Answer. The crunchy numbers are exactly the even integers n = 2, 4, 6, . . . .

Solution. Notice that

2n∏
i=1

xn = (xa1 + xa2 + . . .+ xan)(xan+1 + xan+2 + . . .+ xa2n)

where the ai are any permutation of 1 − 2n. Switching an and an+1 in the formula
and setting both sides to be equal we get an equation that factors into

(xan − xan+1)
[
(xa1 + xa2 + . . .+ xan−1)− (xan+2 + xan+3 + . . .+ xa2n)

]
= 0.

Since not all of the numbers are equal we can see that if any two are not equal then
the other 2n − 2 must be equal by permuting ai in the above equation. Also one of
these two must share the same value as these 2n − 2 by the same logic. So WLOG
x1 = x2 = . . . = x2n−1 = x and a2n = y. So we end up with the equations

nx = xn−1y (n− 1)x+ y = xn.

Notice x 6= 0 or else y would also be 0. Substituting y = n
xn−2 into the second equation,

clearing denominators, and factoring gives us

(xn−1 − n)(xn−1 + 1) = 0.

If x = n−1
√
n then y would also be n−1

√
n. Thus, n− 1 must be odd and then n must

be even. Say n is even. Then setting x1 = x2 = . . . = x2n−1 = −1 and x2n = n clearly
works and we are done �

This problem was proposed by Yannick Yao. This solution was given by Michael Ma.

2. Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle ABC
and a point D such that DB and DC are tangent to the circumcircle of ABC. Let
B′ be the reflection of B over AC and C ′ be the reflection of C over AB. If O is the
circumcenter of DB′C ′, help Oscar prove that AO is perpendicular to BC.

1



Proposed by James Lin.

Solution 1. LetN denote the circumcenter of ABC and let S denote the circumcenter
of NBDC (midpoint of ND). Let T be the point such that ANST is a parallelogram
(hence ASDT too). We will prove that T = O, which implies the result (since
NSD ⊥ BC).

A

B C

D

B′

C′

S

T N

First we claim that 4B′CD ∼ 4TSD, with equal orientation. By angle chasing, we
have

]TSD = ]ANS = ](AN,BC) + 90◦ = (]NAC + ]ACB) + 90◦

= (90◦ − ]CBA) + ]ACB + 90◦ = 2]ACB + ]BAC

= ]B′CA+ ]ACB + ]BCD = ]B′CD.

Finally from isosceles 4DBC ∼ 4SBN , we have

B′C

CD
=
BC

CD
=
BN

NS
=
NA

NS
=
TS

SD
.

This implies the similarity.

Similarly, 4C ′BD ∼ 4TSD. Then there is a spiral similarity sending 4DBC to
4DB′C ′, and sending S to T . As S is the circumcenter of 4DBC, T is the circum-
center of 4DB′C ′, meaning T = O. �

This first solution was suggested by Evan Chen.

Solution 2. First, note that triangles DBC ′ and DCB′ are congruent and in the
same orientation, so DB′C ′ is similar to DBC. Now, let the circumcircle of DB′C ′

intersect DB at P and DC at Q. We have that ∠C ′PB = ∠C ′PD = ∠C ′B′D =

2



∠CBD = ∠BAC = ∠C ′AB, so P lies on the circumcircle of ABC ′. Furthermore,
∠ABP = ∠ACB = ∠AC ′B = ∠APB, so AP = AB. Similarly, AQ = AC. Now, let
X and Y be on DB and DC so that AD = AX = AY .

The key lemma is that given varying points D and E on fixed rays AB and AC
such that AD − AE is constant. Then the circumcenter of ADE lies on a fixed line
parallel to the angle bisector of ∠BAC. The proof of this is that all circumcircles of
ADE share a common midpoint of arc DAE, call it Z, by spiral similarity, so the
circumcenter of ADE lies on the perpendicular bisector of AZ, which is a fixed line
parallel to the angle bisector.

Now, we use this lemma on rays DB and DC. Note that since triangles ADX, ABP ,
ADY , and ACQ are all isosceles, DX −DP = XP = DB = DC = Y Q = DY −DQ,
so we have that DX −DY = DP −DQ. Now, note that the circumcenter of DPQ is
O and the circumcenter of DXY is A, so the line through them is perpendicular to
BC by the lemma, as desired. �

This second solution was suggested by Michael Ren.

This problem was proposed by James Lin.

3. In a Cartesian coordinate plane, call a rectangle standard if all of its sides are parallel
to the x- and y- axes, and call a set of points nice if no two of them have the same
x- or y- coordinates. First, Bert chooses a nice set B of 2016 points in the coordinate
plane. To mess with Bert, Ernie then chooses a set E of n points in the coordinate
plane such that B ∪ E is a nice set with 2016 + n points. Bert returns and then
miraculously notices that there does not exist a standard rectangle that contains at
least two points in B and no points in E in its interior. For a given nice set B that
Bert chooses, define f(B) as the smallest positive integer n such that Ernie can find
a nice set E of size n with the aforementioned properties. Help Bert determine the
minimum and maximum possible values of f(B).

Proposed by Yannick Yao.

Solution 1. The minimum is 2015, since there needs to be a point in J whose x-
coordinate is between each two consecutive points in A when sorted by x-coordinate.
The minimum is achieved when A = {(t, t)|t = 0, 1, · · · , 2015}.
For general |A| = c (instead of 2016) the maximum is 2c− 2

√
c

To keep things clean, I will let c = k2 where k is a positive integer. The construction,
as mentioned above is to take a k by k square and rotate it slightly.

Now to show that 2c− 2k suffices, consider the set of points in A as a poset where for
points p, q, p > q if p is up and right of q.

Take the longest antichain and say it has s elements. This antichain is actually an up
left chain of points. Partition the remaining points into two sets, those that are > than
some element in the antichain and those that are < some element in the antichain.
For the first set, Ernie draws points slightly below and left of each point and Ernie
draws points slightly above and right of each point in the second set.

3



In total Ernie has drawn k2 − s points. (We have eliminated all possible rectangles
where the two points in A form an up right vector since these two points cannot both
be in the antichain)

Now we can do the same for up left rectangles. To finish the problem it suffices to
note Dilworth’s theorem and use AM-GM. �

This first solution was suggested by Allen Liu.

Solution 2. Here is an alternative way to show the maximum. As above, the number
of points needed for J is equal to

• Twice the number of points,

• minus the length of the maximal down-right chain, and

• minus the length of the maximal up-right chain.

If we order the points by their x-coordinate and consider a sequence being their
y-coordinates, the two things we are subtracting becomes the length of maximal de-
creasing subsequence and the length of maximal increasing subsequence respectively.
Notice that if the two lengths are m and n respectively, then the number of points
is at most mn, because of the famous result that a sequence of mn + 1 distinct real
numbers must either contain an increasing subsequence of length m+1 or a decreasing
subsequence of length n+ 1.

Therefore, in the context of this particular case, we have mn ≥ 2016 and we need to
maximize 2 · 2016−m− n, and this is easy by AM-GM, and the maximized result is
2 · 2016− d2

√
2016e = 3942.

This maximum is achieved by having a slightly tilted 42× 48 lattice grid for A. �

4. Big Bird has a polynomial P with integer coefficients such that n divides P (2n)
for every positive integer n. Prove that Big Bird’s polynomial must be the zero
polynomial.

Proposed by Ashwin Sah.

Solution. We claim P (2k) = 0 for every positive integer k, which is enough. Indeed,
for p prime we have

0 ≡ P (2kp) ≡ P (2k) (mod p)

since 2kp ≡ 2k (mod p), so the claim follows by taking p sufficiently large. �

This problem and solution were proposed by Ashwin Sah.

5. Elmo is drawing with colored chalk on a sidewalk outside. He first marks a set S of
n > 1 collinear points. Then, for every unordered pair of points {X,Y } in S, Elmo
draws the circle with diameter XY so that each pair of circles which intersect at two
distinct points are drawn in different colors. Count von Count then wishes to count
the number of colors Elmo used. In terms of n, what is the minimum number of colors
Elmo could have used?

Proposed by Michael Ren.
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Answer. The answer is dn/2e colors, except when n = 3 here the answer is 1.

Solution. I claim that the answer for even n is n/2. We can let the distance between
adjacent points be 1. Label the vertices 1, 2, 3, . . . , n/2, 1, 2, . . . , n/2 in that order, left
to right (we can assume that the line the points are on is horizontal).

Now, consider the n/2 circles whose diameters have endpoints with the same label.
Note that these are pairwise intersecting, so we must use at least n/2 colors.

For the coloring, for circles with diameter ≤ n/2, color them with the label of the
right endpoint of the diameter. For circles with diameter ≥ n/2, color them with the
label of the left endpoint of the diameter. By checking cases, it is not hard to confirm
that this coloring works.

Now we consider n = 2m+ 1 odd. Obviously n = 3 gives 1. For other n = 2m+ 1 we
will show the minimum number of colors is m+ 1. We can construct this by using the
above construction, and coloring each circle containing 2m+ 1 with the color m+ 1.

Now, for proving it, call the vertices 1, 2, . . . ,m,m+ 1, 1, 2, . . . ,m as earlier; we have
the m different colored circles from vertices of the same color. Let f(a, b) denote the
color of the circle with vertex color a in the first m + 1 vertices, and vertex color b
in the last m + 1 vertices. Note that f(1,m + 1) = 1. f(2, 1) = 1, 2, but we know it
is 2 due to the previous conclusion. Similarly, we show that f(k + 1, k) = k + 1 for
1 ≤ k ≤ m, so in particular, we need f(m+ 1,m) = m+ 1, as desired. �

This problem was proposed by Michael Ren. This solution was given by Mihir Singhal
and James Lin.

Remark. An alternate easier version of the problem requires that circles which are
tangent to each other are also distinct colors. In this case the answer is n.

Label the vertices 1, 2, . . . n, and let f(a, b) be the circle with diameter at vertices a, b.
Note that f(1, 2), f(1, 3), . . . , f(1, n), f(2, n) are different colors, so at least n colors
are needed. But then we can let f(a, b) be colored by color a+ b (mod n), so we are
done!

6. Elmo is now learning olympiad geometry. In a triangle ABC with AB 6= AC, let
its incircle be tangent to sides BC, CA, and AB at D, E, and F , respectively. The
internal angle bisector of ∠BAC intersects lines DE and DF at X and Y , respectively.
Let S and T be distinct points on side BC such that ∠XSY = ∠XTY = 90◦. Finally,
let γ be the circumcircle of 4AST .

(a) Help Elmo show that γ is tangent to the circumcircle of 4ABC.

(b) Help Elmo show that γ is also tangent to the incircle of 4ABC.

Proposed by James Lin.

Solution 1. First, we claim that X and Y are the incenter and excenter of 4AST .
(This is Sharygin 2013, Problem 18, also problem 11.12 of Euclidean Geometry in
Mathematical Olympiads.) To see this, recall that ∠AXB = ∠AY C are right angles
(see for example JMO 2014 problem 6). Now let K = AXY ∩ BC and let L be the
foot of the external ∠A-bisector. Then (KL;BC) = −1, so projection onto AI gives

5



(AK;XY ) = −1. Now, since ∠Y SX = 90◦, we see that SX and SY are bisectors of
∠AST . The same statement holds for ∠ATS, which proves the claim.

A

B C

I

D

E

F

X

Y

M

S T

In particular, this implies that AS and AT are isogonal to each other, and therefore
part (a) is solved.

As for part (b), denote (XSTY ) by ω, centered at a point M , which is midpoint of
arc ST of γ. Now, we observe that 4IXD ∼ 4IDY , therefore ID2 = IX · IY and
thus the incircle is orthogonal to ω. Therefore an inversion around ω fixes the incircle.
Now γ is mapped to line BC, which is obviously tangent to incircle. Therefore γ was
tangent too. �

This first solution was suggested by Evan Chen.

Solution 2. Here is an alternate solution to part (b).

Let the A-excircle of ABC be tangent to AB at R and BC at S. It is well-known that
X lies on RS and Y lies on DE. Hence, by some angle-chasing ARX and AY E are
similar (both have angles ∠A2 ,

∠B
2 , 90 + ∠C

2 ), so we have that AR · AE = AX · AY =

AS · AT . Hence, a
√
bc inversion on AST swaps the incircle and A-excircle of ABC.

But it also swaps the circumcircle of AST and ST . Since the incircle and A-excircle
of ABC are both tangent to ST , or BC, both are also tangent to the circumcircle of
AST , as desired. �

This second solution was suggested by Michael Ren..
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Solution 3. We also claim (AST ) is tangent to the A-excircle.

It’s well-known and you can prove with angle-chasing that X,Y are the feet of the
perpendiculars from B,C to AI, where I is the incenter.

Let M be the midpoint of BC and N be the midpoint of XY . Clearly MN ⊥ XY so
we get that N lies on the radical axis of the incircle and A-excircle, and it is obvious
that N is the center of the circle of diameter XY .

Note that IX ⊥ BX. Let B′ be the midpoint of DF , so that B,B′ correspond in
inversion about the incircle. Thus, if X ′ is the image of X under inversion about the
incircle, we should have that ∠IB′X ′ = 90◦ so that X ′ lies on DF . Then it’s clear
that X ′ = Y so X,Y are inverses under inversion about the incircle.

Now this means that (XY ) is orthogonal to the incircle. Note that since N is on the
radical axis of the incircle and A-excircle, P (N, incircle) = P (N,A-excircle) = NX
which means (XY ) is also orthogonal to the A-excircle.

Now let Z be the foot of the A-angle bisector. We claim that (AZ), (XY ) are orthog-
onal. It suffices to show (A,Z;X,Y ) is harmonic. Let Z ′ be the foot of the A-external
angle bisector. Project (A,Z;X,Y ) from ∞AZ′ down to line BC so it follows that
(A,Z;X,Y ) = (Z ′, Z;B,C) which is clearly harmonic. Then (AZ), (XY ) are orthog-
onal as claimed. But then it follows that A,Z are also inverses in inversion about
circle (XY ).

Now invert (AST ) about (XY ). Clearly S, T remain fixed while A goes to Z so (AST )
and line BC are inverses. This can only happen if (AST ) passes through N , the center
of inversion. Then A,S, T,N are concyclic. Now it also follows from this inversion
that since the incircle and excircle remain fixed, the image of (AST ) is tangent to
both circles, so (AST ) was tangent to the incircle and A-excircle.

Now note that N is the midpoint of arc ST on (AST ) because NS = NT . But then
it follows that ∠SAN = ∠TAN . Since ∠BAN = ∠CAN we deduce that AS,AT are
isogonal w.r.t. ∠BAC.

Let O1 be the circumcenter of AST and H be the orthocenter of ABC. Then AH,AO
are isogonal in triangle ABC but AH,AO1 are isogonal in triangle AST so we deduce
that A,O,O1 are collinear. Then it follows that (AST ) is tangent to the circumcircle
of ABC as desired. �

This third solution was suggested by Vincent Huang.

This problem was proposed by James Lin.
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vEry badLy naMed cOntest
19th ELMO

Pittsburgh, PA

Year: 2017

Day: 1

Saturday, June 10, 2017
1:15PM — 5:45PM

Problem 1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd
positive integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

Problem 2. Let ABC be a triangle with orthocenter H, and let M be the midpoint of
BC. Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

Problem 3. nicκy is drawing kappas in the cells of a square grid. However, he does not
want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find
all real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



vEry badLy naMed cOntest
19th ELMO

Pittsburgh, PA

Year: 2017

Day: 2

Saturday, June 17, 2017
1:15PM — 5:45PM

Problem 4. An integer n > 2 is called tasty if for every ordered pair of positive integers
(a, b) with a + b = n, at least one of a

b and b
a is a terminating decimal. Do there exist

infinitely many tasty integers?

Problem 5. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle
has sum of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Here K2017 is defined as the complete graph on 2017 vertices, with an edge between every
pair of vertices.)

Problem 6. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

Note of Confidentiality

The shortlisted problems should be kept strictly confidential until disclosed pub-

licly by the committee on the ELMO.

Contributing Students

The Problem Selection Committee for ELMO 2017 thanks the following proposers

for contributing 45 problems to this year’s Competition:

Ashwin Sah, Colin Tang, Daniel Liu, David Stoner, Jeffery
Li, Michael Kural, Michael Ma, Michael Ren, Mihir Sing-
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Problems
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?
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(Nathan Ramesh and Palmer Mebane)

G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)
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Solutions
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

It should be clear that both sequences converge to 1. In the first sequence, the distance
from 1 is halved every time and converges to 0. In the second sequence bn = bk

n

0 and
since kn converges to 0, bi converges to 1.

The key lemma to solve the problem is the following:

Lemma. If k < 1
2 then there exists 0 < x0 < 1 such that whenever x0 < x < 1,

xk >
2k + 1

4
x+

3− 2k

4
.

Proof. First notice that if we take the tangent to y = xk at (1, 1) we get the equation
y = kx+ (1− k). We can see by taking the first derivative of

kx+ (1− k)− xk

to get
k − kxk−1

which is negative as kx + (1 − k) − xk is decreasing from 0 to 1. Furthermore xk is
concave and increasing from 0 to 1. Now it if we take a line of higher slope than k passing
through (1, 1) for large enough x the line will fall under xk.

Now let x0 be as above, and let a = 2k+1
4 < 1

2 for convenience. Now we can see that

bn+1 > abn + (1− a).

Take the smallest M such that aM and bM are both larger than x0. By iterating both
recurrences we can see that for ` = 0, 1, . . . we have

aM+` = 1−
(

1

2

)`
(1− aM ) and bM+` > 1− a`(1− bM ).

Since 1
2a > 1 we can take a sufficiently large positive integer `0 such that

(
1
2a

)`0 > 1−bM
1−aM .

Then taking N = M + `0 we are done since bN > aN and

xk > ax+ (1− a) >
x+ 1

2

for x > x0.
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A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

The answer is f(x) = kx+ ` where k and ` are any real numbers with k ≥ 0.
We begin with some weird optimizations:

• Since f can be shifted by a constant, we get f(0) = 0.

• Put c = 0 and b = −a to get f(a3) + f(−a3) = 0, so that f is odd.

• Put c = 0 now to get f(a3) + f(b3) ≥ 0 whenever a+ b ≥ 0. Combined with f odd,
this implies f is weakly increasing.

Now, we let c = −a− b to get:

f(a3) + f(b3) + f(−(a+ b)3) = 3f(−ab(a+ b))

Using oddness and rearranging:

f(a3) + f(b3) + 3f(ab(a+ b)) = f((a+ b)3)

Call this property P (a, b).

Lemma. f(2km) = 2kf(m) for all integer k and real m > 0.

Proof. P (d1/3, d1/3) gives 2f(d) + 3f(2d) = f(8d). Consider the sequence αk = f(2km).
We have a linear recurrence: αk+3 = 3αk+1 + 3αk. Its characteristic equation has roots
2,−1,−1, so we have f(2km) = αk = c12

k + c2(−1)k + c3(−1)kk for some c1, c2, c3 that
may depend on m but not on k. This can be extended to negative k as well. Note
that since f(x) is increasing and f(0) = 0, αk ≥ 0 for all k. Now, if either c2 or c3
is nonzero, you can take k → −∞ with the right parity, and you will get αk < 0, a
contradiction. Thus c2 = c3 = 0, so f(2km) = c12k. Plugging in k = 0, we get c1 = f(m),
so f(2km) = 2kf(m) as desired.

Lemma. f(φ3km) = φ3kf(m) for all integer k and real m > 0.

Proof. P (d1/3, φd1/3) gives f(d)+4f(φ3d) = f(φ6d). Again, this gives a linear recurrence
for the sequence βk = φ3km, βk+2 = 4βk+1 + βk. Its characteristic equation has roots
φ3,−φ−3, so we have f(φ3km) = βk = c4φ

3k+c5(−φ−3)k for some c4, c5 that may depend
on m but not on k. As before, c5 must be zero, so f(φ3km) = c4φ

3k. Plugging in k = 0,
c4 = f(m), so f(φ3km) = φ3kf(m) as desired.

Now I claim that f(x) = f(1)x for all x. Since f is odd, we only need to prove this
for positive x. If f(1) = 0, we are done by Lemma 1. Otherwise, for a contradiction, let
f(n) 6= f(1)n for some n > 0. (note that f(n) ≥ 0). Let f(n) > f(1)n; the case where
f(n) < f(1)n is similar. By Dirichlet’s approximation theorem, we can find r, s such
that:

n <
2s

φ3r
<
f(n)

f(1)

6
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or, expanding,
φ3rn < 2s =⇒ φ3rf(n) > 2sf(1)

But, by Lemmas 1 and 2:

f(φ3rn) = φ3rf(n) and f(2s) = 2sf(1)

a contradiction to the fact that f is increasing. Thus, f(x) = f(1)x for all x. Re-adjusting
for the assumption that f(0) = 0, f(x) is linear. Plugging back in to the condition, f(x)
can be any linear function with a nonnegative coefficient of x.
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C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

Sorry, the answer we had originally was wrong. The user talkon gives an answer of:

• If gcd(m,n) > 1 then no such sequence exists.

• If m ≡ n ≡ 1 (mod 2) then no such sequence exists.

• Otherwise, suppose m is even. Then the answer is

max{2p,m}+ max{q, n}

where p ≥ 0 is minimal such that 2mp ≡ ±1 (mod n), and q is 2pm±1
n , whichever

is the smallest integer.

(The obvious guess k = m+n is not correct.) See https://artofproblemsolving.com/

community/c6h1472063.
This problem is actually known already. The question was raised by Alasdair Iain

Houston in the 1970s, with members of the Fairy Chess Correspondence Circle. It
appeared in print in George Jelliss’s paper Theory of Leapers in Chessics 24, 1985.
(Chessics was a fairy chess and recreational mathematics journal published and edited by
Jelliss; issue 24 is available https://www.mayhematics.com/p/p.htm and the discussion
of Houston’s problem begins page 96.)
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C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

In general, the answer for 2m+ 1 is 2− 1
2m+1 .

We prove the lower bound by induction on m: assume some edge vw is labeled 1.
Then we delete it, noting that edges touching v and w contribute a sum of at least
4 · (2m− 1) = 8m− 4. Thus by induction hypothesis the total is at least(

2m− 1

2

)(
2− 1

2m− 1

)
+ (8m− 4) + 1 =

(
2m+ 1

2

)(
2− 1

2m+ 1

)
as desired.

Interestingly, there are (at least) two equality cases. One is to have all edges be 2
except for m disjoint edges, which have weight 1. Another is to split the vertex set into
two sets A ∪ B with |A| = m and |B| = m + 1, then weight all edges in A × B with 1
and the remaining edges with 3.

Remark. In fact, given any equality case on c vertices, one can generate one on c+ 2
vertices by two vertices u and v, connected to the previous c vertices with weight 2, and
then equipping uv with weight 1.
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C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

Solution by Mihir Singhal:
We first note that, given any binary string with n ones, we can achieve any integer

value in the range [n, 3n2 ] as follows: first, put pluses between every digit. Then, remove
the plus directly after every other 1. Doing this one at a time gives everything from n to
3n
2 .

Now we prove the result for n ≥ 17. Let n be the number of ones. If any power of 2 is in
the range [n, 3n2 ], then we are done already. Otherwise, we must have 2α + 1 ≤ n < 2α+2

3
for some integer α. We claim that 2α+1 is achievable via the following algorithm:

0. Put pluses in between every digit, so that we have a current sum n.

1. Cut off the part of the string from the fourth to right 1 onwards; call this the tail,
and the rest the head.

2. Starting at the leftmost ungrouped 1, group that one with the two digits immediately
following it.

3. Repeat step 2 until the sum is ≥ 2α+1.

4. Adjust the result until the sum is exactly 2α+1.

We first show that the condition in 3 occurs before step 2 becomes impossible. Note
that since there are at least 13 ones in the head, at least four full groups can be
attained before step 2 becomes problematic. Note that the group transformations take
1 + 1 + 1→ 7, 1 + 0 + 1→ 5, 1 + 1 + 0→ 6, 1 + 0 + 0→ 4. In particular, the sum value
v becomes ≥ 2v + 1. Suppose that ` is the number of leftover ones in the tail after all
possible groups have been formed in the manner described, and g is the number of groups
formed. The sum at this point is at least:

2(n− `− 4) + g + `+ 4 = 2n+ g − `− 4

Since g ≥ 4 and ` ≤ 2, this is at least 2n − 2 ≥ 2α+1. So, the condition in step 3 will
indeed arise before step 2 becomes impossible.

Now we clarify step 4. Suppose that on the formation of group 1 + b0 + b1 →
4 + 2b0 + b1 the sum first becomes ≥ 2α+1. If it equals 2α+1, we are done. Otherwise,
since every grouping increases the sum by at most 4, the beforehand sum is in the set
{2α+1 − 3, 2α+1 − 2, 2α+1 − 1}.

• If the sum is 2α+1 − 3, then change 1 + b0 to 1b0 and the tail sum from 4 to 6
(possibly by the lemma).

• If the sum is 2α+1 − 2, then change the tail sum from 4 to 6.

• If the sum is 2α+1 − 1, then change the tail sum from 4 to 5.

In any case, a final sum of 2α+1 is attained, as desired.
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C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

Solution by Yevhenii Diomidov, Kada Williams and Mihir Singhal:
The answer is d ≤ 1

2 . The construction consists of placing kappas in all squares of the
forms (2k, 4`), (2k, 4`+ 1), (2k + 1, 4`+ 2), and (2k + 1, 4`+ 3).

To prove that this is minimal, consider all connected components consisting of squares
that contain kappas that are connected via edges. It is easy to see that there are only
five different kinds of connected components.

Extend each connected component into a larger figure as shown below:

Due to the fact that there are no three kappas in a line and due to the nature of the
extensions, one can see that after extension, the interiors of the figures remain disjoint.
However, note that the extended area of each figure is at least twice its original area (it
is exactly twice except for the 2 by 2 square, for which it is 9

4 times the original area).
Some of the extended regions may fall outside the square, but this is fine since the error
is at most O(n).

Thus, Nicky can cover at most n2

2 +O(n) of the squares with kappas, which is what
we wanted to show.

11
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C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?

(Nathan Ramesh and Palmer Mebane)

First solution (Palmer Mebane) Let n = 5 · 220 + 215 − 1 which is odd. For all but 15
people, set χ(x) = n. Biject the 15 people to two element subsets of {1, 2, 3, 4, 5, 6}, and
construct a complete graph K6 where 1 to 6 are the vertices and each person {i, j} is
an edge from i to j. There are 15 perfect matchings (so 3 edges) on K6. Number these
matchings from 0 to 14, and assign each edge the matching numbers it’s a part of, so
each person/edge has 3 matching numbers assigned to them. If the three numbers for
person pi are x, y, z, set χ(pi) = 220 + 2x + 2y + 2z. We claim this is 2-fair but not 1-fair.

It is 2-fair because we can take 6 sets Si such that Si contains all people whose subsets
are of the form {i, j} for some j 6= i. This is because the 15 matching numbers assigned
to 5 people all incident to the same vertex are distinct; that’s how matchings work.

However it is not 1-fair, because we constructed χ so that those sets Si are the only
ways to choose a subset of people whose χ values sum to n. The 5 · 220 term in n forces
us to choose exactly 5 people. Then each of these 5 people comes with three matching
numbers, and the only way to get the 215 − 1 term by summing 15 powers of 2 is to sum
20 + 21 + · · ·+ 214. So our 5 people have to be assigned each matching number from 0 to
14 exactly once between them. But if the edges we choose don’t all come from the same
vertex, then two of the edges will be in the same matching, so that matching number is
repeated and we can’t get 15 powers of 2 to sum to 215 − 1.

Second solution (Krit Boonsiriseth) Here is a counterexample with n = 23: the
capacities are 24, 73, 32, 83, 17, 18, 239. It is not 1-fair since the 17 needs either all the
2’s or all the 3’s while the 18 needs a 2 and a 3. However, a 2-fair carpool system is:

• 2 + 2 + 2 + 17

• 2 + 7 + 7 + 7

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 2 + 3 + 18

• 3 + 3 + 17

• eighteen 23’s.
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G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

We present seven different solutions.

First solution (Michael Ren) Let R be the intersection of (AH) and (ABC), and let
D, E, and F respectively be the orthocenter of APQ, the foot of the altitude from A to
PQ, and the reflection of D across E. Note that F lies on (AH) and E lies on (AM).
Let S and H ′ be the intersection of AH with BC and (ABC) respectively. Note that R
is the center of spiral similarity taking DEF to H ′SH, so D lies on (ABC), as desired.

Second solution (Vincent Huang, Evan Chen) Let DEF be the orthic triangle of
ABC. Let N and S be the midpoints of PQ and AH. Then MS is the diameter of the
nine-point circle, so since SN is the perpendicular bisector of PQ the point N lies on
the nine-point circle too. Now the orthocenter of 4APQ is the reflection of H across
N , hence lies on the circumcircle (homothety of ratio 2 takes the nine-point circle to
(ABC)).

Third solution (Zack Chroman) Let R be the midpoint of PQ, and X the point such
that (M,X;P,Q) = −1. Take E and F to be the feet of the B,C altitudes. Recall that
ME,MF are tangents to the circle (AH), so EF is the polar of M .

Then note that MP ·MQ = MX ·MR = ME2. Then, since X is on the polar of M ,
R lies on the nine-point circle — the inverse of that polar at M with power ME2. Then
by dilation the orthocenter 2~R− ~H lies on the circumcircle of ABC.

Fourth solution (Zack Chroman) We will prove the following more general claim which
implies the problem:

Claim. For a circle γ with a given point A and variable point B, consider a fixed point X
not on γ. Let C be the second intersection of XB and γ, then the locus of the orthocenter
of ABC is a circle

Proof. Complex numbers is straightforward, but suppose we want a more synthetic
solution. Let D be the midpoint of BC. If O is the center of the circle, ∠OMX = 90, so
M lies on the circle (OX). Then

H = 4O −A−B − C = 4O −A− 2D.

So H lies on another circle. (Here we can use complex numbers, vectors, coordinates,
whatever; alternatively we can use the same trick as above and say that H is the reflection
of a fixed point over D).

13
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Fifth solution (Kevin Ren) Let O be the midpoint of AH and N be the midpoint of
PQ. Let K be the orthocenter of APQ.

Because AP ⊥ KQ and KP ⊥ HP , we have KQ ‖ PH. Similarly, KP ‖ QH. Thus,
KPHQ is a parallelogram, which means KH and PQ share the same midpoint N .

Since N is the midpoint of chord PQ, we have ∠ONM = 90◦. Hence N lies on the
9-point circle. Take a homothety from H mapping N to K. This homothety maps the
9-point circle to the circumcircle, so K lies on the circumcircle.

Sixth solution (Evan Chen, complex numbers) We use complex numbers with (AHEF )
the unit circle, centered at N . Let a, e, f denote the coordinates of A, E, F , and hence
h = −a. Since M is the pole of EF , we have m = 2ef

e+f . Now, the circumcenter O of

4ABC is given by o = 2ef
e+f + a, due to the fact that ANMO is a parallelogram.

The unit complex numbers p and q are now known to satisfy

p+ q =
2ef

e+ f
+

2pq

e+ f

so

(a+ p+ q)− o =
2pq

e+ f
and a− o =

2ef

e+ f

which clearly have the same magnitude. Hence the orthocenter of 4APQ and A are
equidistant from O.

Seventh solution (Evan Chen, complex numbers) Here is another complex solution
using (APQ) as the unit circle. We let the fourth point M satisfy m + pqm = p + q.
Moreover, let D be the reflection of H across M ; we wish to show a+ p+ q lies on the
circle with diameter AD. This is:

(a+ p+ q)− a
(a+ p+ q)− (2m− h)

=
p+ q

p+ q − 2m(
p+ q

p+ q − 2m

)
=

1
p + 1

q
1
p + 1

q − 2m
=

p+ q

p+ q − 2pqm

=
p+ q

p+ q − 2(p+ q −m)
=

p+ q

2m− p− q
.
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G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

WLOG assume AB < AC. Also suppose P is on the same side of EF as A, so that
A,P,E, F are concyclic. Basic angle-chasing tells us ∠EIF = 120◦, hence I lies on the
same circle as A,E, F, P .

Let the circumcircle of 4BFI meet BC again at point Q′. By Miquel’s Theorem
on 4ABC and points Q′, EF we have that Q′, I, C,E are concyclic. Hence ∠EQ′F =
∠EQ′I + ∠FQ′I = ∠ECI + ∠FBI = 1

2(∠B + ∠C) = 60◦, implying that E,F,Q,Q′ are
concyclic.

Since ∠FEI = ∠FAI = 30◦ = 1
2∠FEQ and FE = EQ, we know that F,Q are

reflections about BI, so since F ∈ AB we have Q ∈ BC. Now since I must lie on
the perpendicular bisector of QQ′, we deduce that if X is the midpoint of QQ′, then
IX ⊥ BC.

Since AP is the exterior angle bisector of ∠BAC it’s well-known that AP,EF,BC
concur at a point R, hence RA · RP = RE · RF = RQ · RQ′, implying A,P,Q,Q′ are
concyclic, hence OX ⊥ BC =⇒ OI ⊥ BC as desired.
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G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

The main point is to show that there are no triangles in the graph of scribable pairs,
after which Turan’s theorem finishes the proof. This is essentially Poncelet porism but
we give a direct proof.

Suppose there exist three circles A,B,C with radii a, b, c respectively (with a > b >
c > 0) such that (A,B), (B,C), (A,C) are scribable. Then by triangle inequality and
Euler’s formula, we have√

a(a− 2b) +
√
b(b− 2c) ≥

√
a(a− 2c).

However note that√
a(a− 2c)−

√
a(a− 2b) =

√
a(2b− 2c)√

a− 2c+
√
a− 2b

>

√
a(2b− 2c)√
a+
√
a

= b− c

and √
b(b− 2c) ≤

√
b2 − 2bc+ c2 = b− c

establishing a contradiction.
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G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

Solution by Ankan:
Let MB and NB be the midpoints of the minor and major arcs AC, and define MC

and NC similarly. It’s well known that I = NBB1 ∩NCC1.
The case where O = I is left to the reader as an exercise. If O 6= I, Pascal on

MBBB2C1NCMC and MCCC2B1NBMB give MBMC∩C1B2 ∈ OI and MBMC∩B1C2 ∈
OI, so X = B1C2 ∩ C1B2 ∈MBMC .

But this is equivalent to XA = XI, so done. (One way to see this is to let IA, IB , and
IC be the A-, B-, and C-excenters of 4ABC, and consider the homothety with ratio 1

2
centered at I; it takes IBIC to MBMC .)
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N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

The inequality is homogenous, so we may assume gcd(a1, . . . , an) = 1. Then we want
to show

gcd(an1 + P, . . . , ann + P ) ≤ 2.

So it suffices to show that neither 4 nor any odd prime divides the gcd.
First, let p be an odd prime. Suppose that p | ani +P for all i. Then ani ≡ −P (mod p),

so multiplying this for all i, we get Pn ≡ −Pn (mod p). Then we see that p | P , so p
divides ani for each i, contradiction.

If p = 4, similarly 2 | P and 2 | ani for each i, contradiction.
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N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

The answer is no. (In fact, a computation implies that n = 21 is the largest one.)
First, we recall the well-known fact that the fraction a

b , with gcd(a, b) = 1, is terminating
if and only if the prime factorization of b consists only of 2s and 5s.

Consider some tasty number n and all pairs (a, b) with a+b = n, gcd(a, n) = 1, a ≤ 0.5n.
It’s clear that there are 0.5φ(n) of these pairs, and since gcd(a, b) = 1 we must have that
at least one of a and b has a prime factorization of only 2s and 5s.

But considering all numbers 2x5y ≤ n, we know x ≤ log2 n + 1, y ≤ log5 n + 1,
hence there are at most (log2 n + 1)(log5 n + 1) such numbers, so we deduce that
(log2 n+ 1)(log5 n+ 1) ≥ 0.5φ(n).

Lemma. For every n > 2, φ(n) ≥ 0.5
√
n.

Proof. Decompose n into prime powers peii . For each pi > 2, it’s easy to show that
pei−1i (p − 1) ≥

√
peii . For pi = 2, we can show that pei−1i (p − 1) ≥ 0.5

√
peii , hence

multiplying these bounds gives the desired.

Therefore, for n to be tasty, we need (log2 n + 1)(log5 n + 1) ≥ 0.25
√
n, which only

holds for finitely many n as desired.
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N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)

No sequence exists for any C. Note that the divisibility is homogenous with respect to
the ai so we can shift the sequence and WLOG assume that a1 = 1.

Note that any prime divisor of the ai must also be a prime divisor of C. Let

C = pc11 p
c2
2 . . . pckk

be the prime factorization of C.

Claim. Fix p = pj and c = cj . Then for any index k we have

νp(ai) ≤ cHk + νp(a1).

Proof. Let bi = νp(ai). We apply strong induction: Base case of k = 1 is trivial. Now
assume bi ≤ Hi−1c+ b1 for i ≤ k; then

bk+1 ≤ c+

∑k
i=1 bi
k

≤ c+

∑k
i=1Hi−1c+ b1

k

= c

(
1 +

∑k
i=1Hi−1
k

)
+ b1

= c

(
1 +

k−1
1 + k−2

2 + · · ·+ 1
k−1

k

)
+ b1

= c

(
1 +

k − 1

k · 1
+
k − 2

k · 2
+ · · ·+ 1

(k − 1) · k

)
+ b1

= c

(
1 +

1

1
− 1

k
+

1

2
− 1

k
+ · · ·+ 1

k − 1
− 1

k

)
+ b1

= cHk + b1

and the induction is complete.

Now, let N be a positive integer, and let m = 1 + maxj νpj (a1). We have that

νpjai ≤ cjHi + νpj (a1) ≤ cj(m+ logN)

if i ≤ N . Hence, there are at most

k∏
j=1

[1 + cj(m+ logN)] = O
(

(logN)k
)

possible k-triples that (νp1ai, νp2ai, . . . , νpkai) can be. But this also needs to be at least
N + 1, which is impossible for large N .
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Note of Confidentiality

The shortlisted problems should be kept strictly confidential until disclosed pub-

licly by the committee on the ELMO.

Contributing Students

The Problem Selection Committee for ELMO 2017 thanks the following proposers

for contributing 45 problems to this year’s Competition:

Ashwin Sah, Colin Tang, Daniel Liu, David Stoner, Jeffery
Li, Michael Kural, Michael Ma, Michael Ren, Mihir Sing-
hal, Nathan Ramesh, Nathan Weckwerth, Palmer Mebane,
Ruidi Cao, Tristan Shin, Vincent Huang, Zack Chroman

Problem Selection Committee

The Problem Selection Committee for ELMO 2017 was led by Evan Chen and

consisted of:

• Ashwin Sah

• James Lin

• Kevin Ren

• Mihir Singhal

• Michael Ma

• Michael Ren

• Yannick Yao
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Problems
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?
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(Nathan Ramesh and Palmer Mebane)

G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)
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Solutions
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

It should be clear that both sequences converge to 1. In the first sequence, the distance
from 1 is halved every time and converges to 0. In the second sequence bn = bk

n

0 and
since kn converges to 0, bi converges to 1.

The key lemma to solve the problem is the following:

Lemma. If k < 1
2 then there exists 0 < x0 < 1 such that whenever x0 < x < 1,

xk >
2k + 1

4
x+

3− 2k

4
.

Proof. First notice that if we take the tangent to y = xk at (1, 1) we get the equation
y = kx+ (1− k). We can see by taking the first derivative of

kx+ (1− k)− xk

to get
k − kxk−1

which is negative as kx + (1 − k) − xk is decreasing from 0 to 1. Furthermore xk is
concave and increasing from 0 to 1. Now it if we take a line of higher slope than k passing
through (1, 1) for large enough x the line will fall under xk.

Now let x0 be as above, and let a = 2k+1
4 < 1

2 for convenience. Now we can see that

bn+1 > abn + (1− a).

Take the smallest M such that aM and bM are both larger than x0. By iterating both
recurrences we can see that for ` = 0, 1, . . . we have

aM+` = 1−
(

1

2

)`
(1− aM ) and bM+` > 1− a`(1− bM ).

Since 1
2a > 1 we can take a sufficiently large positive integer `0 such that

(
1
2a

)`0 > 1−bM
1−aM .

Then taking N = M + `0 we are done since bN > aN and

xk > ax+ (1− a) >
x+ 1

2

for x > x0.
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A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

The answer is f(x) = kx+ ` where k and ` are any real numbers with k ≥ 0.
We begin with some weird optimizations:

• Since f can be shifted by a constant, we get f(0) = 0.

• Put c = 0 and b = −a to get f(a3) + f(−a3) = 0, so that f is odd.

• Put c = 0 now to get f(a3) + f(b3) ≥ 0 whenever a+ b ≥ 0. Combined with f odd,
this implies f is weakly increasing.

Now, we let c = −a− b to get:

f(a3) + f(b3) + f(−(a+ b)3) = 3f(−ab(a+ b))

Using oddness and rearranging:

f(a3) + f(b3) + 3f(ab(a+ b)) = f((a+ b)3)

Call this property P (a, b).

Lemma. f(2km) = 2kf(m) for all integer k and real m > 0.

Proof. P (d1/3, d1/3) gives 2f(d) + 3f(2d) = f(8d). Consider the sequence αk = f(2km).
We have a linear recurrence: αk+3 = 3αk+1 + 3αk. Its characteristic equation has roots
2,−1,−1, so we have f(2km) = αk = c12

k + c2(−1)k + c3(−1)kk for some c1, c2, c3 that
may depend on m but not on k. This can be extended to negative k as well. Note
that since f(x) is increasing and f(0) = 0, αk ≥ 0 for all k. Now, if either c2 or c3
is nonzero, you can take k → −∞ with the right parity, and you will get αk < 0, a
contradiction. Thus c2 = c3 = 0, so f(2km) = c12k. Plugging in k = 0, we get c1 = f(m),
so f(2km) = 2kf(m) as desired.

Lemma. f(φ3km) = φ3kf(m) for all integer k and real m > 0.

Proof. P (d1/3, φd1/3) gives f(d)+4f(φ3d) = f(φ6d). Again, this gives a linear recurrence
for the sequence βk = φ3km, βk+2 = 4βk+1 + βk. Its characteristic equation has roots
φ3,−φ−3, so we have f(φ3km) = βk = c4φ

3k+c5(−φ−3)k for some c4, c5 that may depend
on m but not on k. As before, c5 must be zero, so f(φ3km) = c4φ

3k. Plugging in k = 0,
c4 = f(m), so f(φ3km) = φ3kf(m) as desired.

Now I claim that f(x) = f(1)x for all x. Since f is odd, we only need to prove this
for positive x. If f(1) = 0, we are done by Lemma 1. Otherwise, for a contradiction, let
f(n) 6= f(1)n for some n > 0. (note that f(n) ≥ 0). Let f(n) > f(1)n; the case where
f(n) < f(1)n is similar. By Dirichlet’s approximation theorem, we can find r, s such
that:

n <
2s

φ3r
<
f(n)

f(1)

6
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or, expanding,
φ3rn < 2s =⇒ φ3rf(n) > 2sf(1)

But, by Lemmas 1 and 2:

f(φ3rn) = φ3rf(n) and f(2s) = 2sf(1)

a contradiction to the fact that f is increasing. Thus, f(x) = f(1)x for all x. Re-adjusting
for the assumption that f(0) = 0, f(x) is linear. Plugging back in to the condition, f(x)
can be any linear function with a nonnegative coefficient of x.
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C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

Sorry, the answer we had originally was wrong. The user talkon gives an answer of:

• If gcd(m,n) > 1 then no such sequence exists.

• If m ≡ n ≡ 1 (mod 2) then no such sequence exists.

• Otherwise, suppose m is even. Then the answer is

max{2p,m}+ max{q, n}

where p ≥ 0 is minimal such that 2mp ≡ ±1 (mod n), and q is 2pm±1
n , whichever

is the smallest integer.

(The obvious guess k = m+n is not correct.) See https://artofproblemsolving.com/

community/c6h1472063.
This problem is actually known already. The question was raised by Alasdair Iain

Houston in the 1970s, with members of the Fairy Chess Correspondence Circle. It
appeared in print in George Jelliss’s paper Theory of Leapers in Chessics 24, 1985.
(Chessics was a fairy chess and recreational mathematics journal published and edited by
Jelliss; issue 24 is available https://www.mayhematics.com/p/p.htm and the discussion
of Houston’s problem begins page 96.)
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C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

In general, the answer for 2m+ 1 is 2− 1
2m+1 .

We prove the lower bound by induction on m: assume some edge vw is labeled 1.
Then we delete it, noting that edges touching v and w contribute a sum of at least
4 · (2m− 1) = 8m− 4. Thus by induction hypothesis the total is at least(

2m− 1

2

)(
2− 1

2m− 1

)
+ (8m− 4) + 1 =

(
2m+ 1

2

)(
2− 1

2m+ 1

)
as desired.

Interestingly, there are (at least) two equality cases. One is to have all edges be 2
except for m disjoint edges, which have weight 1. Another is to split the vertex set into
two sets A ∪ B with |A| = m and |B| = m + 1, then weight all edges in A × B with 1
and the remaining edges with 3.

Remark. In fact, given any equality case on c vertices, one can generate one on c+ 2
vertices by two vertices u and v, connected to the previous c vertices with weight 2, and
then equipping uv with weight 1.
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C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

Solution by Mihir Singhal:
We first note that, given any binary string with n ones, we can achieve any integer

value in the range [n, 3n2 ] as follows: first, put pluses between every digit. Then, remove
the plus directly after every other 1. Doing this one at a time gives everything from n to
3n
2 .

Now we prove the result for n ≥ 17. Let n be the number of ones. If any power of 2 is in
the range [n, 3n2 ], then we are done already. Otherwise, we must have 2α + 1 ≤ n < 2α+2

3
for some integer α. We claim that 2α+1 is achievable via the following algorithm:

0. Put pluses in between every digit, so that we have a current sum n.

1. Cut off the part of the string from the fourth to right 1 onwards; call this the tail,
and the rest the head.

2. Starting at the leftmost ungrouped 1, group that one with the two digits immediately
following it.

3. Repeat step 2 until the sum is ≥ 2α+1.

4. Adjust the result until the sum is exactly 2α+1.

We first show that the condition in 3 occurs before step 2 becomes impossible. Note
that since there are at least 13 ones in the head, at least four full groups can be
attained before step 2 becomes problematic. Note that the group transformations take
1 + 1 + 1→ 7, 1 + 0 + 1→ 5, 1 + 1 + 0→ 6, 1 + 0 + 0→ 4. In particular, the sum value
v becomes ≥ 2v + 1. Suppose that ` is the number of leftover ones in the tail after all
possible groups have been formed in the manner described, and g is the number of groups
formed. The sum at this point is at least:

2(n− `− 4) + g + `+ 4 = 2n+ g − `− 4

Since g ≥ 4 and ` ≤ 2, this is at least 2n − 2 ≥ 2α+1. So, the condition in step 3 will
indeed arise before step 2 becomes impossible.

Now we clarify step 4. Suppose that on the formation of group 1 + b0 + b1 →
4 + 2b0 + b1 the sum first becomes ≥ 2α+1. If it equals 2α+1, we are done. Otherwise,
since every grouping increases the sum by at most 4, the beforehand sum is in the set
{2α+1 − 3, 2α+1 − 2, 2α+1 − 1}.

• If the sum is 2α+1 − 3, then change 1 + b0 to 1b0 and the tail sum from 4 to 6
(possibly by the lemma).

• If the sum is 2α+1 − 2, then change the tail sum from 4 to 6.

• If the sum is 2α+1 − 1, then change the tail sum from 4 to 5.

In any case, a final sum of 2α+1 is attained, as desired.
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C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

Solution by Yevhenii Diomidov, Kada Williams and Mihir Singhal:
The answer is d ≤ 1

2 . The construction consists of placing kappas in all squares of the
forms (2k, 4`), (2k, 4`+ 1), (2k + 1, 4`+ 2), and (2k + 1, 4`+ 3).

To prove that this is minimal, consider all connected components consisting of squares
that contain kappas that are connected via edges. It is easy to see that there are only
five different kinds of connected components.

Extend each connected component into a larger figure as shown below:

Due to the fact that there are no three kappas in a line and due to the nature of the
extensions, one can see that after extension, the interiors of the figures remain disjoint.
However, note that the extended area of each figure is at least twice its original area (it
is exactly twice except for the 2 by 2 square, for which it is 9

4 times the original area).
Some of the extended regions may fall outside the square, but this is fine since the error
is at most O(n).

Thus, Nicky can cover at most n2

2 +O(n) of the squares with kappas, which is what
we wanted to show.
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C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?

(Nathan Ramesh and Palmer Mebane)

First solution (Palmer Mebane) Let n = 5 · 220 + 215 − 1 which is odd. For all but 15
people, set χ(x) = n. Biject the 15 people to two element subsets of {1, 2, 3, 4, 5, 6}, and
construct a complete graph K6 where 1 to 6 are the vertices and each person {i, j} is
an edge from i to j. There are 15 perfect matchings (so 3 edges) on K6. Number these
matchings from 0 to 14, and assign each edge the matching numbers it’s a part of, so
each person/edge has 3 matching numbers assigned to them. If the three numbers for
person pi are x, y, z, set χ(pi) = 220 + 2x + 2y + 2z. We claim this is 2-fair but not 1-fair.

It is 2-fair because we can take 6 sets Si such that Si contains all people whose subsets
are of the form {i, j} for some j 6= i. This is because the 15 matching numbers assigned
to 5 people all incident to the same vertex are distinct; that’s how matchings work.

However it is not 1-fair, because we constructed χ so that those sets Si are the only
ways to choose a subset of people whose χ values sum to n. The 5 · 220 term in n forces
us to choose exactly 5 people. Then each of these 5 people comes with three matching
numbers, and the only way to get the 215 − 1 term by summing 15 powers of 2 is to sum
20 + 21 + · · ·+ 214. So our 5 people have to be assigned each matching number from 0 to
14 exactly once between them. But if the edges we choose don’t all come from the same
vertex, then two of the edges will be in the same matching, so that matching number is
repeated and we can’t get 15 powers of 2 to sum to 215 − 1.

Second solution (Krit Boonsiriseth) Here is a counterexample with n = 23: the
capacities are 24, 73, 32, 83, 17, 18, 239. It is not 1-fair since the 17 needs either all the
2’s or all the 3’s while the 18 needs a 2 and a 3. However, a 2-fair carpool system is:

• 2 + 2 + 2 + 17

• 2 + 7 + 7 + 7

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 2 + 3 + 18

• 3 + 3 + 17

• eighteen 23’s.
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G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

We present seven different solutions.

First solution (Michael Ren) Let R be the intersection of (AH) and (ABC), and let
D, E, and F respectively be the orthocenter of APQ, the foot of the altitude from A to
PQ, and the reflection of D across E. Note that F lies on (AH) and E lies on (AM).
Let S and H ′ be the intersection of AH with BC and (ABC) respectively. Note that R
is the center of spiral similarity taking DEF to H ′SH, so D lies on (ABC), as desired.

Second solution (Vincent Huang, Evan Chen) Let DEF be the orthic triangle of
ABC. Let N and S be the midpoints of PQ and AH. Then MS is the diameter of the
nine-point circle, so since SN is the perpendicular bisector of PQ the point N lies on
the nine-point circle too. Now the orthocenter of 4APQ is the reflection of H across
N , hence lies on the circumcircle (homothety of ratio 2 takes the nine-point circle to
(ABC)).

Third solution (Zack Chroman) Let R be the midpoint of PQ, and X the point such
that (M,X;P,Q) = −1. Take E and F to be the feet of the B,C altitudes. Recall that
ME,MF are tangents to the circle (AH), so EF is the polar of M .

Then note that MP ·MQ = MX ·MR = ME2. Then, since X is on the polar of M ,
R lies on the nine-point circle — the inverse of that polar at M with power ME2. Then
by dilation the orthocenter 2~R− ~H lies on the circumcircle of ABC.

Fourth solution (Zack Chroman) We will prove the following more general claim which
implies the problem:

Claim. For a circle γ with a given point A and variable point B, consider a fixed point X
not on γ. Let C be the second intersection of XB and γ, then the locus of the orthocenter
of ABC is a circle

Proof. Complex numbers is straightforward, but suppose we want a more synthetic
solution. Let D be the midpoint of BC. If O is the center of the circle, ∠OMX = 90, so
M lies on the circle (OX). Then

H = 4O −A−B − C = 4O −A− 2D.

So H lies on another circle. (Here we can use complex numbers, vectors, coordinates,
whatever; alternatively we can use the same trick as above and say that H is the reflection
of a fixed point over D).

13
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Fifth solution (Kevin Ren) Let O be the midpoint of AH and N be the midpoint of
PQ. Let K be the orthocenter of APQ.

Because AP ⊥ KQ and KP ⊥ HP , we have KQ ‖ PH. Similarly, KP ‖ QH. Thus,
KPHQ is a parallelogram, which means KH and PQ share the same midpoint N .

Since N is the midpoint of chord PQ, we have ∠ONM = 90◦. Hence N lies on the
9-point circle. Take a homothety from H mapping N to K. This homothety maps the
9-point circle to the circumcircle, so K lies on the circumcircle.

Sixth solution (Evan Chen, complex numbers) We use complex numbers with (AHEF )
the unit circle, centered at N . Let a, e, f denote the coordinates of A, E, F , and hence
h = −a. Since M is the pole of EF , we have m = 2ef

e+f . Now, the circumcenter O of

4ABC is given by o = 2ef
e+f + a, due to the fact that ANMO is a parallelogram.

The unit complex numbers p and q are now known to satisfy

p+ q =
2ef

e+ f
+

2pq

e+ f

so

(a+ p+ q)− o =
2pq

e+ f
and a− o =

2ef

e+ f

which clearly have the same magnitude. Hence the orthocenter of 4APQ and A are
equidistant from O.

Seventh solution (Evan Chen, complex numbers) Here is another complex solution
using (APQ) as the unit circle. We let the fourth point M satisfy m + pqm = p + q.
Moreover, let D be the reflection of H across M ; we wish to show a+ p+ q lies on the
circle with diameter AD. This is:

(a+ p+ q)− a
(a+ p+ q)− (2m− h)

=
p+ q

p+ q − 2m(
p+ q

p+ q − 2m

)
=

1
p + 1

q
1
p + 1

q − 2m
=

p+ q

p+ q − 2pqm

=
p+ q

p+ q − 2(p+ q −m)
=

p+ q

2m− p− q
.
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G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

WLOG assume AB < AC. Also suppose P is on the same side of EF as A, so that
A,P,E, F are concyclic. Basic angle-chasing tells us ∠EIF = 120◦, hence I lies on the
same circle as A,E, F, P .

Let the circumcircle of 4BFI meet BC again at point Q′. By Miquel’s Theorem
on 4ABC and points Q′, EF we have that Q′, I, C,E are concyclic. Hence ∠EQ′F =
∠EQ′I + ∠FQ′I = ∠ECI + ∠FBI = 1

2(∠B + ∠C) = 60◦, implying that E,F,Q,Q′ are
concyclic.

Since ∠FEI = ∠FAI = 30◦ = 1
2∠FEQ and FE = EQ, we know that F,Q are

reflections about BI, so since F ∈ AB we have Q ∈ BC. Now since I must lie on
the perpendicular bisector of QQ′, we deduce that if X is the midpoint of QQ′, then
IX ⊥ BC.

Since AP is the exterior angle bisector of ∠BAC it’s well-known that AP,EF,BC
concur at a point R, hence RA · RP = RE · RF = RQ · RQ′, implying A,P,Q,Q′ are
concyclic, hence OX ⊥ BC =⇒ OI ⊥ BC as desired.
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G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

The main point is to show that there are no triangles in the graph of scribable pairs,
after which Turan’s theorem finishes the proof. This is essentially Poncelet porism but
we give a direct proof.

Suppose there exist three circles A,B,C with radii a, b, c respectively (with a > b >
c > 0) such that (A,B), (B,C), (A,C) are scribable. Then by triangle inequality and
Euler’s formula, we have√

a(a− 2b) +
√
b(b− 2c) ≥

√
a(a− 2c).

However note that√
a(a− 2c)−

√
a(a− 2b) =

√
a(2b− 2c)√

a− 2c+
√
a− 2b

>

√
a(2b− 2c)√
a+
√
a

= b− c

and √
b(b− 2c) ≤

√
b2 − 2bc+ c2 = b− c

establishing a contradiction.
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G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

Solution by Ankan:
Let MB and NB be the midpoints of the minor and major arcs AC, and define MC

and NC similarly. It’s well known that I = NBB1 ∩NCC1.
The case where O = I is left to the reader as an exercise. If O 6= I, Pascal on

MBBB2C1NCMC and MCCC2B1NBMB give MBMC∩C1B2 ∈ OI and MBMC∩B1C2 ∈
OI, so X = B1C2 ∩ C1B2 ∈MBMC .

But this is equivalent to XA = XI, so done. (One way to see this is to let IA, IB , and
IC be the A-, B-, and C-excenters of 4ABC, and consider the homothety with ratio 1

2
centered at I; it takes IBIC to MBMC .)
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N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

The inequality is homogenous, so we may assume gcd(a1, . . . , an) = 1. Then we want
to show

gcd(an1 + P, . . . , ann + P ) ≤ 2.

So it suffices to show that neither 4 nor any odd prime divides the gcd.
First, let p be an odd prime. Suppose that p | ani +P for all i. Then ani ≡ −P (mod p),

so multiplying this for all i, we get Pn ≡ −Pn (mod p). Then we see that p | P , so p
divides ani for each i, contradiction.

If p = 4, similarly 2 | P and 2 | ani for each i, contradiction.

18
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N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

The answer is no. (In fact, a computation implies that n = 21 is the largest one.)
First, we recall the well-known fact that the fraction a

b , with gcd(a, b) = 1, is terminating
if and only if the prime factorization of b consists only of 2s and 5s.

Consider some tasty number n and all pairs (a, b) with a+b = n, gcd(a, n) = 1, a ≤ 0.5n.
It’s clear that there are 0.5φ(n) of these pairs, and since gcd(a, b) = 1 we must have that
at least one of a and b has a prime factorization of only 2s and 5s.

But considering all numbers 2x5y ≤ n, we know x ≤ log2 n + 1, y ≤ log5 n + 1,
hence there are at most (log2 n + 1)(log5 n + 1) such numbers, so we deduce that
(log2 n+ 1)(log5 n+ 1) ≥ 0.5φ(n).

Lemma. For every n > 2, φ(n) ≥ 0.5
√
n.

Proof. Decompose n into prime powers peii . For each pi > 2, it’s easy to show that
pei−1i (p − 1) ≥

√
peii . For pi = 2, we can show that pei−1i (p − 1) ≥ 0.5

√
peii , hence

multiplying these bounds gives the desired.

Therefore, for n to be tasty, we need (log2 n + 1)(log5 n + 1) ≥ 0.25
√
n, which only

holds for finitely many n as desired.
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N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)

No sequence exists for any C. Note that the divisibility is homogenous with respect to
the ai so we can shift the sequence and WLOG assume that a1 = 1.

Note that any prime divisor of the ai must also be a prime divisor of C. Let

C = pc11 p
c2
2 . . . pckk

be the prime factorization of C.

Claim. Fix p = pj and c = cj . Then for any index k we have

νp(ai) ≤ cHk + νp(a1).

Proof. Let bi = νp(ai). We apply strong induction: Base case of k = 1 is trivial. Now
assume bi ≤ Hi−1c+ b1 for i ≤ k; then

bk+1 ≤ c+

∑k
i=1 bi
k

≤ c+

∑k
i=1Hi−1c+ b1

k

= c

(
1 +

∑k
i=1Hi−1
k

)
+ b1

= c

(
1 +

k−1
1 + k−2

2 + · · ·+ 1
k−1

k

)
+ b1

= c

(
1 +

k − 1

k · 1
+
k − 2

k · 2
+ · · ·+ 1

(k − 1) · k

)
+ b1

= c

(
1 +

1

1
− 1

k
+

1

2
− 1

k
+ · · ·+ 1

k − 1
− 1

k

)
+ b1

= cHk + b1

and the induction is complete.

Now, let N be a positive integer, and let m = 1 + maxj νpj (a1). We have that

νpjai ≤ cjHi + νpj (a1) ≤ cj(m+ logN)

if i ≤ N . Hence, there are at most

k∏
j=1

[1 + cj(m+ logN)] = O
(

(logN)k
)

possible k-triples that (νp1ai, νp2ai, . . . , νpkai) can be. But this also needs to be at least
N + 1, which is impossible for large N .
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Problem 1. Let n be a positive integer. There are 2018n + 1 cities in the Kingdom of
Sellke Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads on
any path between the two cities.)

For which n is it possible for Mark to achieve this?

Problem 2. Consider infinite sequences a1, a2, . . . of positive integers satisfying a1 = 1
and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. For a given positive integer m, find the maximum possible
value of a2m.

Problem 3. Let A be a point in the plane, and ` a line not passing through A. Evan does
not have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked in
this process.) Additionally, Evan can mark the intersections between two objects drawn,
and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct∗ the reflection of A over `?

(ii) Can Evan construct the foot of the altitude from A to `?

∗To construct a point, Evan must have an algorithm which marks the point in finitely many steps.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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1:15PM — 5:45PM

Problem 4. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let
P be the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot
of the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle† of 4ABC.

Problem 5. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there
exist nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n + ai

⌋
=

⌊√
bn + c

⌋
holds for all integers n > N .

Problem 6. A windmill is a closed line segment of unit length with a distinguished end-
point, the pivot. Let S be a finite set of n points such that the distance between any
two points of S is greater than c. A configuration of n windmills is admissible if no two
windmills intersect and each point of S is used exactly once as a pivot.

An admissible configuration of windmills is initially given to Geoff in the plane. In one
operation Geoff can rotate any windmill around its pivot, either clockwise or counterclock-
wise and by any amount, as long as no two windmills intersect during the process. Show
that Geoff can reach any other admissible configuration in finitely many operations, where

(i) c =
√

3,

(ii) c =
√

2.

†The nine-point circle of 4ABC is the unique circle passing through the following nine points: the
midpoint of the sides, the feet of the altitudes, and the midpoints of AH, BH, and CH.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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Note of Confidentiality

The shortlisted problems should be kept strictly confidential until disclosed publicly

by the committee on the ELMO.

Contributing Students

The Problem Selection Committee for ELMO 2018 thanks the following proposers

for contributing 90 problems to this year’s Competition:

Adam Ardeishar, Andrew Gu, Ankan Bhattacharya, Bran-
don Wang, Carl Schildkraut, Daniel Hu, Daniel Liu, Eric
Gan, Kevin Ren, Krit Boonsiriseth, Luke Robitaille, Michael
Kural, Michael Ma, Michael Ren, Sam Ferguson, Tristan
Shin, Vincent Bian, Vincent Huang, Zack Chroman

Problem Selection Committee

The Problem Selection Committee for ELMO 2018 was led by Evan Chen and

consisted of:

• Andrew Gu

• Daniel Liu

• James Lin

• Michael Ma

• Michael Ren

• Mihir Singhal

• Zack Chroman
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Problems
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.
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For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)
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Solutions
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

Yes. It’s clear f0, f1, f2, . . . all commute with f . If f doesn’t have finite order this
collection is infinite and valid.

Else, suppose that fn = id, where n is minimal. If n = 1 the problem is clear, so suppose
n > 1. Then f is composed of some cycles; some cycle length d | n appears infinitely
many times. Let a countable number of these cycles be xr,1 → xr,2 → · · · → xr,d → xr,1
for r ∈ Z.
Then for every integer s, create a new function hs fixing everything except the xk,ℓ,

and send every xr,a → xr+s,a. It is clear that every hs commutes with f .
This gives infinitely many g, unless all but finitely many of the cycles have length

1. In that case, we can find more g by swapping any two fixed points of f and leaving
everything else intact.
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A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

If all the ai are equal, then
∑m

i=1

√
n+ ai =

√
m2n+m2a1 and so (b, c) = (m2,m2a1)

works fine.
Let us assume this is not the case. Instead, will take b = m2 and c = m(a1+· · ·+am)−1

and claim it works for N large enough.
On the one hand,

m∑
i=1

√
n+ ai < m ·

√
n+

a1 + · · ·+ am
m

=
√
m2 · n+ c+ 1 ≤

⌈√
m2 · n+ c+ 1

⌉
≤
⌊√

m2 · n+ c
⌋
+ 1.

On the other hand, let λ = c
2(c+1) <

1
2 . We use the following estimate.

Claim. If n is large enough in terms of (a1, . . . , am) then
√
n+ ai ≥

√
n+ λai√

n
.

Proof. Squaring both sides, it’s equivalent to ai ≥ 2λ · ai +
λ2a2i
n , which holds for n big

enough as 2λ < 1.

Now,
m∑
i=1

√
n+ ai ≥

m∑
i=1

(√
n+

λai√
n

)
≥ m

√
n+

λ · (a1 + · · ·+ an)√
n

= m
√
n+

λ · (c+ 1)

m
√
n

= m
√
n+

c

2m
√
n
>
√
m2 · n+ c ≥

⌊√
m2n+ c

⌋
.

This finishes the problem.

Remark. Obviously, b = m2 for asymptotic reasons (by taking n large). As for possible
values of c:

• If a1 = · · · = am, then one can show c = m(a1 + · · ·+ am) is the only valid choice.

Indeed, taking n of the form n = k2 − a and n = k2−1
m2 − a is enough to see this.

• But if not all ai are equal, the natural guess of taking c = m(a1 + · · ·+ an) is not
valid in general. For example, we have that⌊√

n+
√
n+ 2

⌋
̸=
⌊√

4n+ 4
⌋

n ∈ {t2 − 1 | t = 2, 3, . . . }.

I think one can actually figure out exactly which c are valid, though the answer will
depend on some quadratic residues, and we do not pursue this line of thought here.

So any correct solutions must distinguish these two cases.
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A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

We present three solutions.

First solution, proof without words (by proposer)

ax + by + cz = yz · a
x

yz
+ zx · a

y

zx
+ xy · a

z

xy

≥ (xy + yz + zx)

((
ax

yz

)yz ( by

zx

)zx( cz

xy

)xy) 1
xy+yz+zx

= (xy + yz + zx) · (abc)
xyz

xy+yz+zx

x
xy+zx

xy+yz+zx y
yz+xy

xy+yz+zx z
zx+yz

xy+yz+zx

≥ (xy + yz + zx) · (abc)
xyz

xy+yz+zx(
x· xy+zx

xy+yz+zx
+y· yz+xy

xy+yz+zx
+z· zx+yz

xy+yz+zx

2

)2

= (xy + yz + zx) · 4(abc)
xyz

xy+yz+zx(∑
cyc x ·

(
1− yz

xy+yz+zx

))2
=

4abc(xy + yz + zx)

(x+ y + z − 3 xyz
xy+yz+zx)

2

=
4abcxyz

(x+ y + z − 3)2
.

Second solution, by weighted AM-GM (Andrew Gu) By weighted AM-GM,

1

x
· xax + 1

y
· yby + 1

z
· zcz ≥ x

1
x y

1
y z

1
z abc.

Hence it suffices to show

x
1
x y

1
y z

1
z ≥ 4xyz

(x+ y + z − 3)2
.

By weighted AM-GM,

2x
1
2
(1− 1

x
)y

1
2
(1− 1

y
)
z

1
2
(1− 1

z
) ≤ 2 · 1

2
(x− 1 + y − 1 + z − 1) = x+ y + z − 3.

Squaring both sides and rearranging proves the required inequality.

Third solution, by Hölder and Schur/Muirhead (Evan Chen) By Hölder and weighted
AM-GM we have√(

1

x2
+

1

y2
+

1

z2

)
(ax + by + cz) ≥ 1

x
· ax/2 + 1

y
· by/2 + 1

z
· cz/2 ≥ (abc)1/2.
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Hence, it suffices to prove that

(x+ y + z − 3)2 ≥ 4xyz
(
1/x2 + 1/y2 + 1/z2

)
∀1
x
+

1

y
+

1

z
= 1

which is a 3-variable symmetric inequality. It also happens to be is MOP 2011, K4.1,
done in my SOS handout. We give a proof below (with a = 1/x, etc).

Claim (Black MOP 2011, Test 4, Problem 1). If a, b, c > 0 then(
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
− 3

)2

≥ 4

(
(a+ b+ c)(a2 + b2 + c2)

abc

)
Proof. Expanding and clearing denominators it’s just∑

sym

a4b2 +
∑
cyc

a3b3 + 6a2b2c2 ≥ 2
∑
cyc

a4bc+ 2
∑
sym

a3b2c

which can also be written as

0

0 0

1 -2 1

2 -2 -2 2

1 -2 6 -2 1

0 -2 -2 -2 -2 0

0 0 1 2 1 0 0

in Chinese dumbass notation. This rewrites as∑
cyc

a4(b− c)2 + 2
∑
cyc

ab(ab− bc)(ab− ac) ≥ 0

which is evident (the latter sum is “upsidedown triangle Schur”).
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A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

We claim the answer is r > 1. The answer is divided into two parts.

Part I: Any value of r > 1 can be achieved. To prove this, we will show that the
polynomial

P (x) = xn − rn

has no tasty multiples if rn ≥ 2 (such an n exists because r > 1). Set M = rn. Assume
we have a polynomial

R(x) =
N∑
i=0

aix
i

so that −1 ≤ ai ≤ 1 for all i (aN = 1) and P |R. Taking R modulo P , we get that, with
N = bn+ c and 0 ≤ c < n (setting ak = 0 if k > N),

R(x) =
n−1∑
j=0

b∑
k=0

akn+jx
kn+j ≡

n−1∑
j=0

xj

[
b∑

k=0

akn+jR
k

]
.

We have this must be the zero polynomial (since P |R); specifically, taking j = c,

b∑
k=0

ank+cR
k = 0

b−1∑
k=0

(−ank+c)R
k = abn+cR

b

b−1∑
k=0

|ank+c|Rk ≥ Rb

(since abn+c = aN = 1). However, since |ank+c| ≤ 1, we then have

b−1∑
k=0

Rk ≥ Rb

Rb − 1

R− 1
≥ Rb

Rb − 1 ≥ Rb+1 −Rb

Rb(2−R) ≥ 1.

However, as R ≥ 2, this is false.
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Part II: Any polynomial with r ≤ 1 has a tasty multiple. Define the sparsity of a
polynomial to be the greatest common divisor of the exponents m for which the coefficient
of xm in P is not zero. Equivalently, it is the largest integer d so that P (x) = Q(xd) for
some polynomial Q.

We prove the following theorem:

Theorem. Given any complex number z for which |z| ≤ 1, there exist tasty polynomials
with z as a root that have arbitrarily large sparsities.

Proof. Let z = reiθ. If θ is a rational multiple of π (say, θ = aπ/b), then we take the
polynomial xbn−rbn for any integer n; this has sparsity bn and is tasty (as r ≤ 1, rbn ≤ 1).
So, it suffices to prove this in the case where θ is not a rational multiple of π, and we
henceforth assume this.
We claim that, for infinitely many n, the polynomial

x2n − 2 cos (nθ) rnxn + r2n

is tasty (note that this polynomial has sparsity n and as such the theorem is implied by
this claim). First note that this polynomial reduces to

xn = rne±niθ =
(
re±iθ

)n
,

which is true at x = reiθ = z, so z is in fact a root.
We recall the following lemma:

Lemma. For any real number ϕ which is not a rational multiple of π, the sequence
an = cos (nϕ) has infinitely many terms in the range [−1/2, 1/2].

Indeed, let {x} be the fractional part of x, and consider the sequence

αn =

{
nϕ

2π

}
.

We see that −1/2 ≤ an ≤ 1/2 iff 1/6 ≤ αn ≤ 1/3 or 2/3 ≤ αn ≤ 5/6. It is well known
that the sequence xn = {nx} is dense in [0, 1] for any irrational x, so this is true. Thus,
for infinitely many n, as θ has been assumed not to be a rational multiple of π, the
coefficients of P are bounded above in absolute value by rn and r2n for infinitely many
n, both of which are ≤ 1 as r ≤ 1.

We now provide a second lemma.

Lemma. If P (x) and Q(x) are both tasty polynomials and the sparsity D of P is greater
than the degree d of Q, then the product R(x) = P (x)Q(x) is also tasty.

Proof. Write

P (x) =

s∑
j=0

ajx
Dj , Q(x) =

d∑
k=0

bkx
k.

Then,

P (x)Q(x) =
s∑

j=0

d∑
k=0

ajbkx
Dj+k.

As D > d, none of these terms interfere with one another (for each integer n, there is at
most one choice of 0 ≤ j ≤ s, 0 ≤ k ≤ d so that Dj + k = s), so the coefficients of R(x)
are just the values of ajbk as j and k range over the desired range; as each aj and bk are
of magnitude ≤ 1, each pairwise product is as well, finishing the proof.
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Given a polynomial P with roots χ1, . . . , χm in C (possibly with duplicates), we will
inductively construct the polynomial R(x) that is tasty and that P divides. We define a
sequence of polynomials R0, . . . , Rm so that R0(x) = 1, and for each 0 < k ≤ m, we take
a tasty polynomial Pk(x) with root χk and sparsity greater than the degree of Rk−1, and
take Rk(x) = Rk−1(x)Pk(x). Such a Pk(x) is guaranteed to exist by our theorem, and
the product Rk−1(x)Pk(x) is guaranteed to be tasty by our lemma. Thus, we may take
R = Rm, finishing the proof.

Remark. A polynomial P that has a tasty multiple exists for all r < 2: We have upon
fixing r < 2 that for large enough n, we know rn− rn−1− · · ·− r− 1 ≤ 0. If n is minimal,
rn − rn−1 − · · · − r > 0, and we can thus take some value 0 ≤ c ≤ 1 for the constant term
by the intermediate value theorem so that P (x) = xn − xn−1 − · · · − x− c has a root at
r. If r ≥ 2, then n = 1 can be taken in Part 1 and thus no tasty multiples exist.
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C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

The answer is n even.
To see that n odd fails, note that by taking i = 1 we see the graph is n-regular; since

it has an odd number of vertices we need n to be even.
On the other hand, if n is even, then consider the graph formed by taking the vertices

of a regular (2018n+ 1)-gon and drawing edges between vertices which are at most n/2
apart. Then this works.
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C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.

For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

Here is a solution by Evan Chen achieving A = 6 · 106, and reprising the joke “six
consecutive zeros”.
We will replace “exactly m numbers” with “at most m numbers”, since this is the

same. Suppose we group the digits of N into base 1000000, so that we have

N = s1s2s3 . . . sm

where each sm is a group of six digits (s1 padded with leading zeros, if needed, but
s1 ̸= 000000). We consider two cases.

• Suppose some group is zero; then we find that N has six consecutive zeros in its
decimal representations. Thus N has the form

N = X ⊕ (b · (1⊕ 0)∧6)⊕ Y

for some strings X and Y (possibly empty), which are formed by repeated concate-
nation.

• Otherwise, note that m ≥ 106. By a classical pigeonhole argument there exist
indices i < j such that si + · · · + sj ≡ 0 (mod 999999). Let n = 1

999999si . . . sj .
Then we can write

N = X ⊕
[
((1⊕ 0)∧6− 1) · n

]
⊕ Y

for strings X = s1 . . . si and Y = sj+1 . . . sn.

Remark (Possible motivational remarks). Ankan Bhattacharya says: I knew that the
answer had to be yes — the obvious counting argument to show answer no doesn’t work,
and the given elements are unrelated enough that proving a no answer would be very
difficult.
Evan says: I think you really do have to use exponentiation, since otherwise the

numbers aren’t big enough; but exponentiation is really painful to deal with, so I tried
to find a way to use it only once. This is less daunting than it seems because you can
concatenate digits “for free” from a size perspective; thus you just need a substring that
you can “save space” on. After a bit of guesswork I came upon the idea of taking modulo
106 − 1 = 999999 (which saves about two digits) and from there I had it.
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Remark (Possible motivational remarks). Ankan Bhattacharya points out that if we fix
all N − 2 operations, then there are only 10N−1 choices, compared to 9 · 10N−1 numbers
we need to obtain. Thus we need to use different operations to reach different numbers.
This suggests that all solutions are likely to use some amount of casework.

Unlike Ankan, I did not find the case split to be a substantial part of the problem. It
came up naturally because I had an edge case where six consecutive zeros might appear
in my argument, and the first case was patch-only in that situation.
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C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

Throughout the solution we will general denote pivots by P , Q, R, . . . and non-pivots
by A, B, C, . . .
We say that a configuration of windmills around S is admissible if no two windmills

intersect. The problem is equivalent to showing one can reach any admissible configuration
from any other (and the final position with the windmills pointing the same direction is
just one example of a clearly admissible configuration).

Draw a red line segment between any two pivots which have distance at most 2 (thus
these windmills could intersect). This naturally gives us a graph G.

Lemma. For c ≥
√
2, the graph G is planar.

Proof. Indeed, if PA and QB intersect, we can consider convex quadrilateral PQAB, one
of whose angles is at least 90◦. WLOG it is ∠PQA, in which case PA2 ≥ PQ2 +QA2 >
2 + 2 = 4, so PA should not be red.

Clearly, we can ignore any isolated vertices. We can also ignore any leaves in G; indeed
suppose P is a pivot with PQ the only red edge. Then we can rotate the windmill at P
to point away from Q and it will never obstruct other windmills since c ≥ 1, so we can
delete the pivot P from consideration (and use induction on the number of pivots, say).
Thus, we may assume G is a finite planar graph with no leaves. Thus it makes sense

to speak of the faces of planar graph G, consisting of several polygons.

Lemma. A windmill with pivot P can never intersect a red edge other than those
touching P .

Proof. Suppose windmill PA intersects red edge QR. Then the altitude from PH
to QR has length at most 1. WLOG that QH < RH, so QH < 1

2QR = 1. Then
PQ2 < QH2 +HP 2 < 1 + 1 = 2, contradiction.
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From now on, a windmill PA is said to hug a red edge PQ if the angle ∠QPA < ε
for some sufficiently small ε in terms of G; each red edge PQ has at most two windmills
hugging it (namely the windmills with pivots P and Q; if this happens, the windmills
are on opposite sides of PQ). Call a windmill configuration cuddly if every windmill is
hugging an edge.

Claim. We can reach some cuddly configuration from any admissible one.

Proof. Indeed, consider a windmill PA not hugging any edge, and an edge PQ, and such
that ∠APQ = θ is minimal among all such pairs. Let ∠RPQ be the corresponding angle
of the face containing PA, and let QB, RC be windmills.

If QB is hugging PQ, we perturb it slightly so that A and B are on opposite sides of
PQ; thus QB is no longer in the way.
We rotate PA towards PQ now. Because we assumed θ = ∠APQ was minimal, it is

impossible for the body of the windmill to collide with the points B or C. So the only
way it can be obstructed is if the point A collides with the interior of QB or RC.

θ
P Q

R

A

B

C

Suppose that A collided with QB. At the moment of collision, we would have to have
∠PAQ ≤ 90◦. (This is because just before the collision PA was still disjoint from QB,
and if ∠PAQ ≥ 90◦ just before then it would remain disjoint as PA rotated.) But then
PQ2 ≤ PA2 +AQ2 ≤ 2, contradiction. A similar proof works for RC.

Thus we can rotate the windmills one by one so they hug the edges, as desired.

It remains to show any two cuddly configurations can be reached from each other. For
this, we make two observations.

• Suppose PA and QB both hug PQ. We show we can interchange the two. Assume
∠RPQ is the angle of a face containing A, and ∠TPQ, ∠PQS are the angles of
the face containing B.

P

Q

S

R

T

A

B
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Rotate PA so it hugs PR (possibly perturbing the windmill at R), and then rotate
QB so it hugs QS (possibly perturbing the windmill at S). Then rotate PA so it
hugs PT , then move QB back so it hugs PQ from the other side, and rotate PA
back.

• Now suppose PA hugs PQ, and ∠RPQ is the angle of a face containing A. Then
we can rotate it so that PA hugs PR (here PA could be blocked by QB initially,
but then we perform the switching operation above).

Together these two observations finish the problem.

Remark (Michael Ren). Here is a solution achieving just c =
√
3.

Draw a disk of radius 1 + ϵ around every point in S such that the distance between
any two points in S is more than

√
3(1 + ϵ) for some ϵ > 0 that clearly exists. Note that

no three disks can intersect. Indeed, if disks centered at A, B, and C intersected, then
the circumradius of ABC is at most 1 + ϵ, which means that some two of A,B,C are at
most a distance of

√
3(1+ ϵ) apart. In light of this, for any two points A and B in S that

are a distance of at most 2 apart, draw a rhombus APBQ of length 1 + ϵ. By our work
before, all such rhombi are distinct. Furthermore, windmill collisions only happen inside
these rhombi by definition. Now, have Geoff move each of his windmills one by one to
Sasha’s windmills. If a windmill collision happens, have Geoff move the other windmill
out of the way inside the rhombus before moving the windmill by and then restore the
position of the other windmill. Hence, he can always get his windmills to coincide, as
desired.

19



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

Let D denote the foot of the A-altitude, and M the midpoint of BC. We claim that
R and Q both lie on line PM . That will solve the problem (M is the fixed point).

A

B CD

E

F

H

P

M

Q

R

By angle chasing, it is not hard to show that

∡FHE = ∡FEM.

Now,
∡FPR = ∡FHR = ∡FHE = ∡FEM = ∡FPM

as desired so P , R, M are collinear. Similarly, P , Q, M are collinear, as desired.
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G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

We present two solutions, one synthetic and by complex numbers.

A

B C

O

T

H

P
X

M

First solution (Zack Chroman) Let M be the midpoint of BC. Note that since
AP ⊥ BC and AT ⊥ AO ∥ PM , we find that P is the orthocenter of △ATM . Thus
Y = TP ∩AM satisfies ∠PYM = 90, so it lies on the 9-point circle.
It then suffices to note that the reflection X ′ of P over Y lies on the circumcircle of

(AMT ) = (TO), so ∠TX ′O = 90 =⇒ X = X ′.

Second solution (complex numbers, Evan Chen) Let Q denote the reflection of P
over M , the midpoint of BC.

Claim. We have QO ⊥ PT .

Proof. By complex numbers. We have

t =
aa(b+ c)− bc(a+ a)

aa− bc
=

a2(b+ c)− 2abc

a2 − bc

t− p =
a2(b+ c)− 2abc

a2 − bc
−
(
a+

b+ c

2

)
=

a2(12b+
1
2c− a) + (−a+ 1

2b+
1
2c)bc

a2 − bc

=
b+ c− 2a

2
· a

2 + bc

a2 − bc

q = 2 · b+ c

2
− p =

b+ c− 2a

2

Since a2+bc
a2−bc

∈ iR, the claim is proven.

Thus, QOX are collinear. By considering right triangle △PQX with midpoint M , we
conclude that MX = MP . Since the nine-point circle is the circle with diameter PM , it
passes through the midpoint of PX.
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G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

The trick is to invert the figure around a circle centered at A of arbitrary radius. We
let ω = ℓ∗ denote the image of ℓ under this inversion. Then, under the inversion, Evan’s
compass has the following behavior:

• Evan can draw a line through two points other than A; or

• Evan can draw a circle through three points other than A.

In other words, the point A is “invisible” to Evan, but Evan otherwise has a straightedge
and the same compass.

It is clear then that the answer to (ii) is no; since the point A is invisible it’s impossible
to construct any point depending on it.

Part (i) is equivalent to showing that Evan can construct the center of ω; we give one
construction here anyways. Take any cyclic quadrilateral WXY Z inscribed in ω, and
let P = WZ ∩XY . Then the circumcircles of △PWX and △PY Z meet again at the
Miquel point M , and the second intersection of (MXZ) and (MWY ) is the center of ω.

Remark. The proof of (ii) implies that it’s actually more or less impossible in this
context to construct any point other than the reflection of A, as a function of A and ℓ.

An alternative proof of (ii) is possible by inverting around a generic point P on ℓ with
radius PA; this necessarily preserves the entire construction, but the foot from A to ℓ is
not fixed by this inversion.
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G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)

We present many, many solutions. In all of them, we let H denote the common
orthocenter.

A

B

C

D

E

F

H

X Y

First solution by Simson lines (Vincent Huang) Let AH meet CE and Ω again at M
and A1, respectively, and P and Q be the projections of A1 onto BD and DF , respectively.
Note that PQ is the Simson line of A1 with respect to BDF . It is well known that this
Simson line bisects the segment between A1 and H. Hence, M lies on PQ. But P , M ,
and Q are respectively the projections of A1 onto DX, XY , and Y D, so A1 must lie on
the circumcircle of DXY , as desired.

Second solution by dual Desargues involution (Michael Ren) Let O and r be the
center and radius of Ω, respectively. Let E be the ellipse with foci O and H consisting
of the set of points P such that OP +HP = r. Note that as the reflections of H over
AC,CE,EA,BD,DF, FB lie on Ω, E is tangent to the sides of ACE and BDF . Let E
and AD meet CE at P and Q, respectively. By the dual of Desargues involution theorem
on quadrilateral ACPE with inscribed conic E , D(CE;XY ;PQ) is an involution. Hence,
the circumcircles of DCE, DXY , and DPQ are coaxial, so it suffices to show that
A1DPQ is cyclic, where A1 is the second intersection of AH and Ω. But note that A1

lies on OP , so ∠QDA1 = ∠ADA1 = π
2 − ∠OA1A = π

2 − ∠PA1A, which is the angle
between PA1 and PQ by the perpendicularity of AA1 and CE, as desired.

Third solution by angle chasing (Mihir Singhal) Let A1 be the reflection of H over
CE. Note A1 is on Ω so it suffices to show that DA1XY is cyclic. Let M be the foot of
the altitude from A to CE. Note that M is the midpoint of HA1 so since A1 is on Ω, M
must be on the nine-point circle of DBF . Let R and S be the feet of the altitudes from
F and B in DBF .
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Note MXRH and MY SH are cyclic. Moreover, M lies on the nine-point circle of
△BDF , and hence ∡SMR = 2∡SDR. Then

∡XHY = ∡XHM + ∡MHY

= ∡XRM + ∡MSY = ∡DRM + ∡MSD

= −(∡RMS + ∡SDR) = ∡SMR+ ∡RDS

= 2∡SDR+ ∡RDS = ∡SDR = ∡Y DX.

Thus ∡XA1Y = −∡XHY = ∡RDS = ∡XDY , as needed.

Fourth solution by inversion (James Lin) Let K be the second intersection of Ω and the
perpendicular from A to CE. We want to show DKXY is cyclic. We invert about H. It’s
clear that now, A′C ′E′ and B′D′F ′ share the same circumcircle Ω′ and incenter H. Note
that K maps to the midpoint MA′ of the arc C ′E′ on Ω′ not containing A′. Also note that
X ′ is the intersection of circles (HB′D′) and (HC ′E′), which are centered at midpoint
MF ′ of the arc B′D′ on Ω′ not containing F ′ and the midpoint MD′ of the arc B′F ′ on Ω′

not containing D′, respectively. Thus, X ′ is the reflection of H over MA′MF ′ . Similarly,
Y ′ is the reflection of H over MA′MB′ . Then, note that MA′X = MA′H = MA′Y . Now
we reformulate the problem by erasing A′, C ′ and E′, as the rest of the problem can be
defined without them. The reformulated statement is that if we fix B,D,F,H and vary
MA′ along Ω′, then D′MA′X ′Y ′ is always cyclic.
We proceed with directed angles. Note that ∡X ′D′MA′ = ∡X ′D′H + ∡HD′MA′ =

∡MA′MF ′F + ∡MD′MF ′MA′ = ∡MD′MF ′F . Similarly, ∡Y ′D′MA′ = MD′MB′B =
−∡MD′MF ′F = −∡X ′DMA′ , so it follows that MA′ lies on an angle bisector of ∡X ′D′Y ′.
Assume that D′MA′ and X ′Y ′ are not perpendicular. Then from MA′X ′ = MA′Y ′, it
follows that D′MA′X ′ and D′MA′Y ′ have the same circumradius, and if they don’t have
the same circumcircle, then D′MA′ and X ′Y ′ must be perpendicular, a contradiction. So
D′X ′MA′Y ′ is cyclic. Hf D′MA′ and X ′Y ′ are perpendicular, then use the new problem
formulation (without A,C and E and just varying MA′) to move MA′ by a miniscule
amount. Then D′MA′ and X ′Y ′ will not be perpendicular, so D′X ′MA′Y ′ is cyclic both
after and before moving MA′ by continuity. We are done.

Fifth solution, by complex numbers (Carl Schildkraut) Let Ω be the unit circle, and
let A = a, etc. We have that

c+ e = h− a =⇒ c+ e

ce
= h̄− 1

a
=⇒ ce =

a(h− a)

ah̄− 1
.

Let T be the second intersection of the line through A perpendicular to CE and Ω. We
see that

t = −ce

a
= − h− a

ah̄− 1
.

24



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

We endeavor to show that DTXY is a cyclic quadrilateral. We have that

x =
ce(b+ d)− bd(c+ e)

ce− bd

=

a(b+d)(h−a)

ah̄−1
− bd(h− a)

a(h−a)

ah̄−1
− bd

= (h− a)

(
a(b+ d)− bd(ah̄− 1)

a(h− a)− bd(ah̄− 1)

)
= (h− a)

(
ab+ ad− ab− ad− abd

f + bd

ab+ ad+ af − a2 − ab− ad− abd
f + bd

)

= (h− a)

(
bd(f − a)

(af + bd)(f − a)

)
=

bd(h− a)

af + bd
.

Similarly

y =
bf(h− a)

ab+ df
.

So, we want to show that

d,− h− a

ah̄− 1
,
bd(h− a)

af + bd
,
bf(h− a)

ab+ df

are concyclic. This is equivalent to, dividing each by h− a and reciprocating,

h− a

d
, 1− ah̄, 1 +

af

bd
, 1 +

ab

df

being concyclic. This is equivalent to, subtracting 1 and multiplying by bdf ,

bf(b+ f − a),−a(bd+ bf + df), ab2, af2

being concyclic. This is equivalent to, adding abf and dividing by b+ f ,

bf,−ad, ab, af

being concyclic. However, all of these points lie on the unit circle, finishing the proof.

Sixth solution by complex numbers (Evan Chen) As usual let Ω denote the unit circle.
We immediately have

c+ e = b+ d+ f − a

and thus
1

c
+

1

e
=

c+ e

ce
=

1

b
+

1

d
+

1

f
− 1

a

=⇒ ce =
b+ f + d− a
1
b +

1
f + 1

d − 1
a

.

These two equations let us eliminate c and e, leaving only a, b, d, f .
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Now consider the point p = − ce
a on the circumcircle. We compute

x− p

b− p
=

x+ ce
a

b+ ce
a

=

bd(c+e)−ce(b+d)
bd−ce + ce

a

b+ ce
a

=
abcd+ abde− abce− adce+ bdce− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/a+ 1/e+ 1/c− 1/d− 1/b)− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/f)− (ce)2

(ab+ ce)(bd− ce)
=

(ce)(abd− cef)

f(ab+ ce)(bd− ce)

Now, we write

ab+ ce =
ab(1b +

1
f + 1

d − 1
a) + (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
ab(1d + 1

f ) + d+ f
1
b +

1
f + 1

d − 1
a

=

1
df (d+ f)(ab+ df)

1
b +

1
f + 1

d − 1
a

bd− ce =
bd(1b +

1
d + 1

f − 1
a)− (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
bd( 1f − 1

a) + (a− f)
1
b +

1
f + 1

d − 1
a

=

1
af (a− f)(bd+ af)

1
b +

1
f + 1

d − 1
a

abd− cef = abd− f(b+ f + d− a)
1
b +

1
f + 1

d − 1
a

=
abd(1b +

1
f + 1

d − 1
a)− f(b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(abdbf − f) + b(a− d) + f(a− d)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(adf − f + (a− d))

1
b +

1
f + 1

d − 1
a

=

1
f (b+ f)(a− f)(f + d)

1
b +

1
f + 1

d − 1
a

.

Putting that all together gives

x− p

b− p
=

ce · adf(b+ f)(1b +
1
f + 1

d − 1
a)

(ab+ df)(bd+ af)

which is symmetric in d and f , so the analogous calculation with y−p
f−p yields the same

result. Consequently, P is the center of the spiral similarity sending Y F to BX, as
desired.

Remark. Philosophical point: it’s necessary to use both a+ c+ e = b+ d+ f and its
conjugate, to capture two degrees of freedom.
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Seventh solution, by inversion and moving points (Anant Mudgal, unedited) Let H
be the common orthocenter. Pick any two vertices X,Y of either △ACE or △BDF and
notice that △XYH has circumradius equal to the radius of Ω. Now invert at H. We
obtain the following equivalent problem.

Let ABCDEF be a cyclic hexagon with △ACE and △BDF sharing a com-
mon incircle ω centered at point H. Let ⊙(HBD),⊙(HFD) meet ⊙(CHE)
again at points X and Y respectively. Let M be the midpoint of arc CE not
containing A. Then ⊙(DXY ) passes through point M .

Let ω touch CE at point N and L = AD∩CE. Let P = DB∩CE and Q = DF ∩CE.
By Dual of Desragues Involution Theorem on circumscribed ACEN and point D; we
conclude (DN,DL), (DC,DE), (DP,DQ) are pairs of an involution. Notice that P has
equal powers in ⊙(HBD),⊙(CHE) hence P lies on XH. Similarly, Q lies on Y H.
Let HN,HL meet ⊙(CHE) again at S, T . Project through H to conclude that

(C,E), (X,Y ), (S, T ) are pairs of an involution on the circle ⊙(CHE). Thus, we conclude
that lines CE,XY , ST concur.

Claim. CE,ST ,DM concur.

Proof. Animate D on ⊙(ACE); then D 7→ L 7→ T is projective. Let U = DM ∩CE and

V = ST ∩ CE then D 7→ U and D 7→ V are also projective. Thus to show W
def
:= U ≡ V

we need to verify for three choices of point D; namely we pick {C,E,M}. These are all
clearly true and the lemma is proved.

Finally, notice WX ·WY = WC ·WE = WD ·WM proving DXYM is cyclic.
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

Denote by Ω and H the circumcircle and orthocenter of △ABC. Let T lie on Ω such
that AT ∥ BC. Let △ABC have orthocenter H.

A

B C

O

D

E

F

P

XY

First solution, synthetic First we prove a lemma.

Claim. The points H,P, T are collinear.

Proof. Let HT meet Ω at P ∗ ̸= T . Let AD meet Ω at K ̸= A. By homothety at K,
HT ∥ DO. By angle chasing, ∠P ∗AD = ∠P ∗AK = ∠P ∗TK = ∠P ∗TO = ∠OP ∗T =
∠P ∗OD, so P ∗ lies on the circumcircle of △AOD. Therefore, P ≡ P ∗ as desired.

We now provide two finishes.

• First finish: By DDIT on AEHF , the pairs of lines (PA,PH), (PB,PC), (PE,PF )
are part of a single involution, so AT,BC,XY are concurrent. Since AT ∥ BC,
this implies that XY ∥ BC as desired.

• Second finish: Let Q = AP ∩EF . By inversion at A, BFPQ, CEPQ, DHPQ are
all cyclic. By the lemma, this implies that ∠ABC + ∠ACB = ∠APT = ∠APH =
∠QPH = ∠QDH = ∠QAH, so DQ ⊥ EF .

Let G = EF ∩ BC; since (G,D;B,C) = −1, ∠BQD = ∠DQC. Thus ∠BAY =
∠BPY = ∠BPF = ∠BQF = ∠CQE = ∠CPE = ∠CPX = ∠CAX, so XY ∥
BC as desired.
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Second solution by complex numbers (Adam Ardeishar) Let ABC be the complex
unit circle. Then D = 1

2(a+ b+ c− bc
a ), and we know

p− a

p− o
· d− o

d− a
∈ R

p− a

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=

1
p − 1

a
1
p

·
1
a + 1

b +
1
c −

a
bc

− 1
a + 1

b +
1
c −

a
bc

1

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=
−1

a
·

1
a + 1

b +
1
c −

a
bc

1
b +

1
c −

1
a − a

bc

−a

p
· a

2 + ab+ ac− bc

ab+ ac− a2 − bc
=

bc+ ab+ ab− a2

ab+ ac− bc− a2

p = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc

Now note that p+ x = e+ pxe, so x = p−e
pe−1 But we compute that

p− e = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
− 1

2
(a+ b+ c− ac

b
)

=
a3b+ a3 + 2a2b2 + a2bc+ ab3 + ab2c+ b3c+ b2c2 − a2c2

2b(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ab− ac+ bc)

2b(a2 − ab− ac− bc)

And also compute

pe− 1 = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
· 1
2
(
1

a
+

1

b
+

1

c
− b

ac
)− 1

=
a3b+ a3c+ a2bc+ a2c2 + ab2c+ 2abc2 + b3c+ b2c2 − ab3

2bc(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ac+ bc− ab)

2bc(a2 − ab− ac− bc)

So

x =

(a+b)(b+c)(a2+ab−ac+bc)
2b(a2−ab−ac−bc)

(a+b)(b+c)(a2+ac+bc−ab)
2bc(a2−ab−ac−bc)

= c · a
2 + ab+ bc− ac

a2 + ac+ bc− ab

By symmetry,

y = b · a
2 + ac+ bc− ab

a2 + ab+ bc− ac

Now note that xy = bc to finish.
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N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

Answer: {a1 . . . , an} = {1, . . . , n}. This works since

(x+ n) . . . (x+ 1)

n!
=

(
x+ n

n

)
∈ Z

so we now show that it is the only possibility. There are two approaches.

First solution Let P (x) = (x+ a1) . . . (x+ an). Then, a1 . . . an should divide the nth
finite difference of P , which is n!. But

a1 . . . an | n! =⇒ {a1 . . . , an} = {1, . . . , n}

for size reasons.

Second solution (Kevin Sun) Let s+ 1 be the smallest positive integer not in our set
A and denote B = A \ {1, . . . , s}.
It’s clear that the divisibility holds for negative x as well. Set x = −s− 1 to obtain

Z ∋ 1

a1 . . . an

∏
a∈A

(x+ a)

=
∏
a∈A

(
1 +

x

a

)
=

∏
a∈{1,...,s}

(
1− s+ 1

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
∏

a∈{1,...,s}

(
a− (s+ 1)

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
(−s)(−(s− 1)) . . . (−1)

1 · 2 · · · · · s
·
∏
b∈B

(
1− s+ 1

b

)
= (−1)|A|

∏
b∈B

(
1− s+ 1

b

)
.

If B is nonempty this has magnitude strictly between 0 and 1, (since minB > s+ 1 and
thus each term is in (0, 1)). Thus B is empty and A = {1, . . . , s}.
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N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

For (a), note that for any t, the numbers t2 + 1, t2 + 2, t2 + 4 are good. So it suffices
to show t2 + 3 is good infinitely often, that is, t2 + 3 = 2x + y2 has infinitely many
nonnegative integer solutions (since for fixed t there are finitely many (x, y)). But this
rearranges t2 − y2 = 2x − 3 which has a solution for every x.

We now turn to the laborious task of (b), determining all sets of five consecutive good
numbers. The answers are the six tuples {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {8, 9, 10, 11, 12},
{9, 10, 11, 12, 13}, {288, 289, 290, 291, 292}, {289, 290, 291, 292, 293}. These all work since

1 = 20 + 02, 2 = 20 + 12, 3 = 21 + 12,

4 = 22 + 02, 5 = 22 + 12, 6 = 21 + 22,

8 = 23 + 02, 9 = 23 + 12, 10 = 20 + 32,

11 = 21 + 32, 12 = 23 + 22, 13 = 22 + 32,

288 = 25 + 162, 289 = 26 + 152, 290 = 20 + 172,

291 = 21 + 172, 292 = 28 + 62, 293 = 22 + 172.

We now show they are the only ones. First, consider the following table which shows
2x + y2 (mod 8):

x = 0 x = 1 x = 2 x ≥ 3

y ≡ 1 (mod 2) 2 3 5 1
y ≡ 0 (mod 4) 1 2 4 0
y ≡ 2 (mod 4) 5 6 0 4

Note that from this table, no good number is 7 (mod 8). Thus any five good numbers
must have a 3 (mod 8) number. By table can only occur if that good number is of the
form t2 + 21 = t2 + 2 for an odd integer t.
We now have several cases.
Case 1: Suppose the five good numbers are {t2 + 1, t2 + 2, t2 + 3, t2 + 4, t2 + 5}.
Note that t2+5 ≡ 6 (mod 8), and by table, this can only occur if t2+5 = s2+22 = s2+4

for some integer s; hence t2 − s2 = 1, so t = 1 and s = 0. This gives the solution set
{2, 3, 4, 5, 6}.

Case 2: Suppose the five good numbers are {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4}.
Since t2 is good, we have t2 = 2w+z2 for some w and z, which we write as (t−z)(t+z) =

2w.
We now split into cases.

• Subcase 2.1: We handle the situation where w < 4.

– If w = 0, then we get t = 1, which gives the solution {1, 2, 3, 4, 5}.
– If w = 1, then there are no solutions by taking mod 4.
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– If w = 2, then t2 = 4 + z2 which implies t = 2, but t was odd.

– If w = 3, we get t2 = 8+ z2 which implies t = 3, which gives {9, 10, 11, 12, 13}.
– If w = 4, we get t2 = 16 + z2 which together with t odd implies t = 5, which

gives {25, 26, 27, 28, 29}. However, the number 28 is not good, so this is not a
solution.

• Subcase 2.2: Suppose w ≥ 5. As gcd(t − z, t + z) | 2t we must have t − z = 2,
t+ z = 2w−1, and thus t = 1

2

(
2 + 2w−1

)
= 2w−2 + 1. Since t was odd, we actually

have w ≥ 3.

But t2 + 3 is also good, so write

t2 + 3 = 2x + y2.

So we split into cases again.

– Subcase 2.2.1: We handle the case x < 3.

∗ If x = 0, we get t2 + 2 = y2 which has no solutions.

∗ If x = 1, we get t2 + 1 = y2 which implies t = 0, but t is supposed to be
odd.

∗ If x = 2, then we get t2 = y2 +1 which implies t = 1, which was an earlier
solution.

– Subcase 2.2.2: Otherwise, assume x ≥ 3.

2x + y2 = t2 + 3

=⇒ 2x + y2 =
(
2w−2 + 1

)2
+ 3

= 22w−4 + 2w−1 + 4

=⇒ 22w−6 + 2w−3 + 1 = 2x−2 + (y/2)2

since y is clearly even; the last line implies y/2 is odd, since 2w − 6 > 0,
w − 3 > 0, x− 2 > 0.

Let c = w − 3 ≥ 2, a = x− 2 ≥ 1, b = y/2 ≥ 1 for brevity; then the equation
rewrites as

22c + 2c + 1 = 2a + b2.

We rewrite this as

(2c + 1− b)(2c + 1 + b) = (2c + 1)2 − b2 = 2a + 2c ≥ 0.

In light of this, we have 2a + 2c ≥ (2c + 1)2 − 22c > 2c+1, so 2a > 2c, ergo
a > c. Thus we may further write

(2c + 1− b)(2c + 1 + b) = 2c(2a−c + 1).

The factors on the left-hand side are nonnegative and have gcd dividing 2b,
hence one of them has at most one factor of 2. So one of the factors must be
divisible by 2c−1. Thus, b ≡ ±1 (mod 2c−1).

But, b < 2c + 1. So we have four possibilities:

∗ Subcase 2.2.2.1: suppose b = 1. Then we get 22c + 2c = 2a, which is
impossible.
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∗ Subcase 2.2.2.2: suppose b = 2c−1 − 1. Then we get (2c−1 + 2)(2c +
2c−1) = 2c(2a−c + 1) and hence 3 · 2c−2 = 2a−c − 2. This implies a− c = 3
and c− 2 = 1, so c = 3, or w = 6, hence t = 2w−2 + 1 = 17.

This gives {289, 290, 291, 292, 293} which indeed works.

∗ Subcase 2.2.2.3: suppose b = 2c−1+1. Then we get 2c−1(2c+2c−1+2) =
2c(2a−c + 1), or 2c−1 + 2c−2 + 1 = 2a−c + 1, which is impossible.

∗ Subcase 2.2.2.4: suppose b = 2c − 1. This gives 2 · 2c+1 = 2c(2a−c + 1),
which is impossible.

Case 3: Suppose the five good numbers are {t2 − 1, t2, t2 + 1, t2 + 2, t2 + 3}.
In that case, {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4} is also a set of five consecutive good

numbers. Using case 2, the new candidate this now gives are {8, 9, 10, 11, 12} and
{288, 289, 290, 291, 292}, which work.
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N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

The answer is a2018 ≤ 21009 − 1. To see this is attainable, consider the sequence

an =

{
1 n odd

2n/2 − 1 n even.

This can be checked to work, so we prove it’s optimal.
We have a2 | a1 + a2 = 1 + a2 =⇒ a2 = 1.
Now consider an integer n, and let s = sn = a1 + · · ·+ an. Then

an+1 | s
an+2 | s+ an+1

an+2 ≡ 1 (mod an+1).

Thus, gcd(an+2, an+1) = 1. So an+2 ≤ s+an+1

an+1
, and thus

an+1 + an+2 ≤ 1 + an+1 +
s

an+2
≤ s+ 2.

So, we have

a1 + a2 = 2

a3 + a4 ≤ 2 + 2 = 4

a5 + a6 ≤ (2 + 4) + 2 = 8

a7 + a8 ≤ (2 + 4 + 8) + 2 = 16

...

a2017 + a2018 ≤ 21009.

Thus a2018 ≤ 21009 − a2017 ≤ 21009 − 1.

Remark (Motivational notes). It’s very quick to notice an+1 | a1+ · · ·+an, which already
means that given the first n terms of the sequence there are finitely many possibilities
for the next one. Thus it’s possible to play with “small cases” by drawing a large tree.

When doing so, one might hope that somehow an = a1 + · · ·+ an−1 is achievable, but
quickly notices in such a tree that if an is the sum of all previous terms, then an+1 = 1 is
forced. This gives the idea to try to look at the terms in pairs, rather than one at a time,
and this gives the correct bound.

As for extracting the equality case from this argument, there are actually two natural
curves to try. We have a3 | 1+1 = 2. If we have a3 = 2 we get a4 = 1, a5 ≤ 5, but then a6
actually gets stuck. But if we have a3 = 1 instead, we get a4 = 3, a5 = 1, a6 = 7, and so
on; pushing this gives the equality case above, seen to work. I think it’s quite unnatural
to guess the correct construction before having the corresponding s+ 2 estimate.
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N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)

This is possible for n = 4 or n prime, in which case d = n − 1 is best possible. Let
P (Z/n) denote the range of a polynomial modulo n.

• We first note that if n = q1 . . . qk is the product of k ≥ 2 distinct prime powers,
then

|P (Z/n)| =
k∏

i=1

|P (Z/qi)|.

Hence any subset S with size n− 1 is not coverable.

• If n = pe is a prime power with other than 4 with e ≥ 2, consider the set
S = {0, 1, . . . , p− 1, p}. We claim it is not coverable.

Indeed, if P covers it, WLOG P (0) = 0. Now, P is surjective modulo p, hence
bijective, and thus P (x) ≡ 0 (mod p) ⇐⇒ x ≡ 0 (mod p). Now we can write

P (x) = a1x+ a2x
2 + . . . .

– If a1 ≡ 0 (mod p), then x ≡ 0 (mod p) =⇒ P (x) ≡ 0 (mod p2), so p does
not appear in the image.

– If a1 ̸≡ 0 (mod p), then p, 2p, . . . all appear in the image, which is wrong for
n > 4.

• Let n = 4, and consider S (mod 4).

– If S = {k} take P (x) = k.

– If S = {k, k + 1} take P (x) = x2 + k.

– If S = {k, k + 2} take P (x) = 2x2 + k.

– If S = {k − 1, k, k + 1} take P (x) = x3 + k.

We claim also the example S = {−1, 0, 1} is not 2-coverable. Indeed, WLOG
P (0) = 0 so P (x) = x(x+ c). Then P (2) ≡ 0 (mod 4), meaning c is even. But
then P (1) ≡ c+ 1 (mod 4) and P (−1) ≡ 1− c (mod 4), so P (1) ≡ P (−1).

– If S = {0, 1, 2, 3} take P (x) = x.

• Let n = 2.

– If S = {k} take P (x) = k.

– If S = {0, 1} take P (x) = x. This is obviously not 0-coverable.

35



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

• If n = p is an odd prime, we claim S = {1, . . . , p − 1} is not (p − 2)-coverable.
Indeed, suppose P (x) = ap−2x

p−2 + · · ·+ a0 covered it. Then∑
x

P (x) ≡
∑
k

ak
∑
x

xk ≡ 0 (mod p).

However, if P (Z/p) = {1, . . . , p − 1} then some element appears twice and the
others appear once. If k is the repeated element though, then

∑
x P (x) = (1+ · · ·+

(p− 1)) + k ≡ k ̸≡ 0 (mod p).
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Problems
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.
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For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)
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Solutions
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

Yes. It’s clear f0, f1, f2, . . . all commute with f . If f doesn’t have finite order this
collection is infinite and valid.

Else, suppose that fn = id, where n is minimal. If n = 1 the problem is clear, so suppose
n > 1. Then f is composed of some cycles; some cycle length d | n appears infinitely
many times. Let a countable number of these cycles be xr,1 → xr,2 → · · · → xr,d → xr,1
for r ∈ Z.
Then for every integer s, create a new function hs fixing everything except the xk,ℓ,

and send every xr,a → xr+s,a. It is clear that every hs commutes with f .
This gives infinitely many g, unless all but finitely many of the cycles have length

1. In that case, we can find more g by swapping any two fixed points of f and leaving
everything else intact.
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A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

If all the ai are equal, then
∑m

i=1

√
n+ ai =

√
m2n+m2a1 and so (b, c) = (m2,m2a1)

works fine.
Let us assume this is not the case. Instead, will take b = m2 and c = m(a1+· · ·+am)−1

and claim it works for N large enough.
On the one hand,

m∑
i=1

√
n+ ai < m ·

√
n+

a1 + · · ·+ am
m

=
√
m2 · n+ c+ 1 ≤

⌈√
m2 · n+ c+ 1

⌉
≤
⌊√

m2 · n+ c
⌋
+ 1.

On the other hand, let λ = c
2(c+1) <

1
2 . We use the following estimate.

Claim. If n is large enough in terms of (a1, . . . , am) then
√
n+ ai ≥

√
n+ λai√

n
.

Proof. Squaring both sides, it’s equivalent to ai ≥ 2λ · ai +
λ2a2i
n , which holds for n big

enough as 2λ < 1.

Now,
m∑
i=1

√
n+ ai ≥

m∑
i=1

(√
n+

λai√
n

)
≥ m

√
n+

λ · (a1 + · · ·+ an)√
n

= m
√
n+

λ · (c+ 1)

m
√
n

= m
√
n+

c

2m
√
n
>
√
m2 · n+ c ≥

⌊√
m2n+ c

⌋
.

This finishes the problem.

Remark. Obviously, b = m2 for asymptotic reasons (by taking n large). As for possible
values of c:

• If a1 = · · · = am, then one can show c = m(a1 + · · ·+ am) is the only valid choice.

Indeed, taking n of the form n = k2 − a and n = k2−1
m2 − a is enough to see this.

• But if not all ai are equal, the natural guess of taking c = m(a1 + · · ·+ an) is not
valid in general. For example, we have that⌊√

n+
√
n+ 2

⌋
̸=
⌊√

4n+ 4
⌋

n ∈ {t2 − 1 | t = 2, 3, . . . }.

I think one can actually figure out exactly which c are valid, though the answer will
depend on some quadratic residues, and we do not pursue this line of thought here.

So any correct solutions must distinguish these two cases.
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A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

We present three solutions.

First solution, proof without words (by proposer)

ax + by + cz = yz · a
x

yz
+ zx · a

y

zx
+ xy · a

z

xy

≥ (xy + yz + zx)

((
ax

yz

)yz ( by

zx

)zx( cz

xy

)xy) 1
xy+yz+zx

= (xy + yz + zx) · (abc)
xyz

xy+yz+zx

x
xy+zx

xy+yz+zx y
yz+xy

xy+yz+zx z
zx+yz

xy+yz+zx

≥ (xy + yz + zx) · (abc)
xyz

xy+yz+zx(
x· xy+zx

xy+yz+zx
+y· yz+xy

xy+yz+zx
+z· zx+yz

xy+yz+zx

2

)2

= (xy + yz + zx) · 4(abc)
xyz

xy+yz+zx(∑
cyc x ·

(
1− yz

xy+yz+zx

))2
=

4abc(xy + yz + zx)

(x+ y + z − 3 xyz
xy+yz+zx)

2

=
4abcxyz

(x+ y + z − 3)2
.

Second solution, by weighted AM-GM (Andrew Gu) By weighted AM-GM,

1

x
· xax + 1

y
· yby + 1

z
· zcz ≥ x

1
x y

1
y z

1
z abc.

Hence it suffices to show

x
1
x y

1
y z

1
z ≥ 4xyz

(x+ y + z − 3)2
.

By weighted AM-GM,

2x
1
2
(1− 1

x
)y

1
2
(1− 1

y
)
z

1
2
(1− 1

z
) ≤ 2 · 1

2
(x− 1 + y − 1 + z − 1) = x+ y + z − 3.

Squaring both sides and rearranging proves the required inequality.

Third solution, by Hölder and Schur/Muirhead (Evan Chen) By Hölder and weighted
AM-GM we have√(

1

x2
+

1

y2
+

1

z2

)
(ax + by + cz) ≥ 1

x
· ax/2 + 1

y
· by/2 + 1

z
· cz/2 ≥ (abc)1/2.

9



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

Hence, it suffices to prove that

(x+ y + z − 3)2 ≥ 4xyz
(
1/x2 + 1/y2 + 1/z2

)
∀1
x
+

1

y
+

1

z
= 1

which is a 3-variable symmetric inequality. It also happens to be is MOP 2011, K4.1,
done in my SOS handout. We give a proof below (with a = 1/x, etc).

Claim (Black MOP 2011, Test 4, Problem 1). If a, b, c > 0 then(
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
− 3

)2

≥ 4

(
(a+ b+ c)(a2 + b2 + c2)

abc

)
Proof. Expanding and clearing denominators it’s just∑

sym

a4b2 +
∑
cyc

a3b3 + 6a2b2c2 ≥ 2
∑
cyc

a4bc+ 2
∑
sym

a3b2c

which can also be written as

0

0 0

1 -2 1

2 -2 -2 2

1 -2 6 -2 1

0 -2 -2 -2 -2 0

0 0 1 2 1 0 0

in Chinese dumbass notation. This rewrites as∑
cyc

a4(b− c)2 + 2
∑
cyc

ab(ab− bc)(ab− ac) ≥ 0

which is evident (the latter sum is “upsidedown triangle Schur”).
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A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

We claim the answer is r > 1. The answer is divided into two parts.

Part I: Any value of r > 1 can be achieved. To prove this, we will show that the
polynomial

P (x) = xn − rn

has no tasty multiples if rn ≥ 2 (such an n exists because r > 1). Set M = rn. Assume
we have a polynomial

R(x) =
N∑
i=0

aix
i

so that −1 ≤ ai ≤ 1 for all i (aN = 1) and P |R. Taking R modulo P , we get that, with
N = bn+ c and 0 ≤ c < n (setting ak = 0 if k > N),

R(x) =
n−1∑
j=0

b∑
k=0

akn+jx
kn+j ≡

n−1∑
j=0

xj

[
b∑

k=0

akn+jR
k

]
.

We have this must be the zero polynomial (since P |R); specifically, taking j = c,

b∑
k=0

ank+cR
k = 0

b−1∑
k=0

(−ank+c)R
k = abn+cR

b

b−1∑
k=0

|ank+c|Rk ≥ Rb

(since abn+c = aN = 1). However, since |ank+c| ≤ 1, we then have

b−1∑
k=0

Rk ≥ Rb

Rb − 1

R− 1
≥ Rb

Rb − 1 ≥ Rb+1 −Rb

Rb(2−R) ≥ 1.

However, as R ≥ 2, this is false.
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Part II: Any polynomial with r ≤ 1 has a tasty multiple. Define the sparsity of a
polynomial to be the greatest common divisor of the exponents m for which the coefficient
of xm in P is not zero. Equivalently, it is the largest integer d so that P (x) = Q(xd) for
some polynomial Q.

We prove the following theorem:

Theorem. Given any complex number z for which |z| ≤ 1, there exist tasty polynomials
with z as a root that have arbitrarily large sparsities.

Proof. Let z = reiθ. If θ is a rational multiple of π (say, θ = aπ/b), then we take the
polynomial xbn−rbn for any integer n; this has sparsity bn and is tasty (as r ≤ 1, rbn ≤ 1).
So, it suffices to prove this in the case where θ is not a rational multiple of π, and we
henceforth assume this.
We claim that, for infinitely many n, the polynomial

x2n − 2 cos (nθ) rnxn + r2n

is tasty (note that this polynomial has sparsity n and as such the theorem is implied by
this claim). First note that this polynomial reduces to

xn = rne±niθ =
(
re±iθ

)n
,

which is true at x = reiθ = z, so z is in fact a root.
We recall the following lemma:

Lemma. For any real number ϕ which is not a rational multiple of π, the sequence
an = cos (nϕ) has infinitely many terms in the range [−1/2, 1/2].

Indeed, let {x} be the fractional part of x, and consider the sequence

αn =

{
nϕ

2π

}
.

We see that −1/2 ≤ an ≤ 1/2 iff 1/6 ≤ αn ≤ 1/3 or 2/3 ≤ αn ≤ 5/6. It is well known
that the sequence xn = {nx} is dense in [0, 1] for any irrational x, so this is true. Thus,
for infinitely many n, as θ has been assumed not to be a rational multiple of π, the
coefficients of P are bounded above in absolute value by rn and r2n for infinitely many
n, both of which are ≤ 1 as r ≤ 1.

We now provide a second lemma.

Lemma. If P (x) and Q(x) are both tasty polynomials and the sparsity D of P is greater
than the degree d of Q, then the product R(x) = P (x)Q(x) is also tasty.

Proof. Write

P (x) =

s∑
j=0

ajx
Dj , Q(x) =

d∑
k=0

bkx
k.

Then,

P (x)Q(x) =
s∑

j=0

d∑
k=0

ajbkx
Dj+k.

As D > d, none of these terms interfere with one another (for each integer n, there is at
most one choice of 0 ≤ j ≤ s, 0 ≤ k ≤ d so that Dj + k = s), so the coefficients of R(x)
are just the values of ajbk as j and k range over the desired range; as each aj and bk are
of magnitude ≤ 1, each pairwise product is as well, finishing the proof.
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20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

Given a polynomial P with roots χ1, . . . , χm in C (possibly with duplicates), we will
inductively construct the polynomial R(x) that is tasty and that P divides. We define a
sequence of polynomials R0, . . . , Rm so that R0(x) = 1, and for each 0 < k ≤ m, we take
a tasty polynomial Pk(x) with root χk and sparsity greater than the degree of Rk−1, and
take Rk(x) = Rk−1(x)Pk(x). Such a Pk(x) is guaranteed to exist by our theorem, and
the product Rk−1(x)Pk(x) is guaranteed to be tasty by our lemma. Thus, we may take
R = Rm, finishing the proof.

Remark. A polynomial P that has a tasty multiple exists for all r < 2: We have upon
fixing r < 2 that for large enough n, we know rn− rn−1− · · ·− r− 1 ≤ 0. If n is minimal,
rn − rn−1 − · · · − r > 0, and we can thus take some value 0 ≤ c ≤ 1 for the constant term
by the intermediate value theorem so that P (x) = xn − xn−1 − · · · − x− c has a root at
r. If r ≥ 2, then n = 1 can be taken in Part 1 and thus no tasty multiples exist.
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C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

The answer is n even.
To see that n odd fails, note that by taking i = 1 we see the graph is n-regular; since

it has an odd number of vertices we need n to be even.
On the other hand, if n is even, then consider the graph formed by taking the vertices

of a regular (2018n+ 1)-gon and drawing edges between vertices which are at most n/2
apart. Then this works.

14
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C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.

For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

Here is a solution by Evan Chen achieving A = 6 · 106, and reprising the joke “six
consecutive zeros”.
We will replace “exactly m numbers” with “at most m numbers”, since this is the

same. Suppose we group the digits of N into base 1000000, so that we have

N = s1s2s3 . . . sm

where each sm is a group of six digits (s1 padded with leading zeros, if needed, but
s1 ̸= 000000). We consider two cases.

• Suppose some group is zero; then we find that N has six consecutive zeros in its
decimal representations. Thus N has the form

N = X ⊕ (b · (1⊕ 0)∧6)⊕ Y

for some strings X and Y (possibly empty), which are formed by repeated concate-
nation.

• Otherwise, note that m ≥ 106. By a classical pigeonhole argument there exist
indices i < j such that si + · · · + sj ≡ 0 (mod 999999). Let n = 1

999999si . . . sj .
Then we can write

N = X ⊕
[
((1⊕ 0)∧6− 1) · n

]
⊕ Y

for strings X = s1 . . . si and Y = sj+1 . . . sn.

Remark (Possible motivational remarks). Ankan Bhattacharya says: I knew that the
answer had to be yes — the obvious counting argument to show answer no doesn’t work,
and the given elements are unrelated enough that proving a no answer would be very
difficult.
Evan says: I think you really do have to use exponentiation, since otherwise the

numbers aren’t big enough; but exponentiation is really painful to deal with, so I tried
to find a way to use it only once. This is less daunting than it seems because you can
concatenate digits “for free” from a size perspective; thus you just need a substring that
you can “save space” on. After a bit of guesswork I came upon the idea of taking modulo
106 − 1 = 999999 (which saves about two digits) and from there I had it.
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Remark (Possible motivational remarks). Ankan Bhattacharya points out that if we fix
all N − 2 operations, then there are only 10N−1 choices, compared to 9 · 10N−1 numbers
we need to obtain. Thus we need to use different operations to reach different numbers.
This suggests that all solutions are likely to use some amount of casework.

Unlike Ankan, I did not find the case split to be a substantial part of the problem. It
came up naturally because I had an edge case where six consecutive zeros might appear
in my argument, and the first case was patch-only in that situation.
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C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

Throughout the solution we will general denote pivots by P , Q, R, . . . and non-pivots
by A, B, C, . . .
We say that a configuration of windmills around S is admissible if no two windmills

intersect. The problem is equivalent to showing one can reach any admissible configuration
from any other (and the final position with the windmills pointing the same direction is
just one example of a clearly admissible configuration).

Draw a red line segment between any two pivots which have distance at most 2 (thus
these windmills could intersect). This naturally gives us a graph G.

Lemma. For c ≥
√
2, the graph G is planar.

Proof. Indeed, if PA and QB intersect, we can consider convex quadrilateral PQAB, one
of whose angles is at least 90◦. WLOG it is ∠PQA, in which case PA2 ≥ PQ2 +QA2 >
2 + 2 = 4, so PA should not be red.

Clearly, we can ignore any isolated vertices. We can also ignore any leaves in G; indeed
suppose P is a pivot with PQ the only red edge. Then we can rotate the windmill at P
to point away from Q and it will never obstruct other windmills since c ≥ 1, so we can
delete the pivot P from consideration (and use induction on the number of pivots, say).
Thus, we may assume G is a finite planar graph with no leaves. Thus it makes sense

to speak of the faces of planar graph G, consisting of several polygons.

Lemma. A windmill with pivot P can never intersect a red edge other than those
touching P .

Proof. Suppose windmill PA intersects red edge QR. Then the altitude from PH
to QR has length at most 1. WLOG that QH < RH, so QH < 1

2QR = 1. Then
PQ2 < QH2 +HP 2 < 1 + 1 = 2, contradiction.
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From now on, a windmill PA is said to hug a red edge PQ if the angle ∠QPA < ε
for some sufficiently small ε in terms of G; each red edge PQ has at most two windmills
hugging it (namely the windmills with pivots P and Q; if this happens, the windmills
are on opposite sides of PQ). Call a windmill configuration cuddly if every windmill is
hugging an edge.

Claim. We can reach some cuddly configuration from any admissible one.

Proof. Indeed, consider a windmill PA not hugging any edge, and an edge PQ, and such
that ∠APQ = θ is minimal among all such pairs. Let ∠RPQ be the corresponding angle
of the face containing PA, and let QB, RC be windmills.

If QB is hugging PQ, we perturb it slightly so that A and B are on opposite sides of
PQ; thus QB is no longer in the way.
We rotate PA towards PQ now. Because we assumed θ = ∠APQ was minimal, it is

impossible for the body of the windmill to collide with the points B or C. So the only
way it can be obstructed is if the point A collides with the interior of QB or RC.

θ
P Q

R

A

B

C

Suppose that A collided with QB. At the moment of collision, we would have to have
∠PAQ ≤ 90◦. (This is because just before the collision PA was still disjoint from QB,
and if ∠PAQ ≥ 90◦ just before then it would remain disjoint as PA rotated.) But then
PQ2 ≤ PA2 +AQ2 ≤ 2, contradiction. A similar proof works for RC.

Thus we can rotate the windmills one by one so they hug the edges, as desired.

It remains to show any two cuddly configurations can be reached from each other. For
this, we make two observations.

• Suppose PA and QB both hug PQ. We show we can interchange the two. Assume
∠RPQ is the angle of a face containing A, and ∠TPQ, ∠PQS are the angles of
the face containing B.

P

Q

S

R

T

A

B
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Rotate PA so it hugs PR (possibly perturbing the windmill at R), and then rotate
QB so it hugs QS (possibly perturbing the windmill at S). Then rotate PA so it
hugs PT , then move QB back so it hugs PQ from the other side, and rotate PA
back.

• Now suppose PA hugs PQ, and ∠RPQ is the angle of a face containing A. Then
we can rotate it so that PA hugs PR (here PA could be blocked by QB initially,
but then we perform the switching operation above).

Together these two observations finish the problem.

Remark (Michael Ren). Here is a solution achieving just c =
√
3.

Draw a disk of radius 1 + ϵ around every point in S such that the distance between
any two points in S is more than

√
3(1 + ϵ) for some ϵ > 0 that clearly exists. Note that

no three disks can intersect. Indeed, if disks centered at A, B, and C intersected, then
the circumradius of ABC is at most 1 + ϵ, which means that some two of A,B,C are at
most a distance of

√
3(1+ ϵ) apart. In light of this, for any two points A and B in S that

are a distance of at most 2 apart, draw a rhombus APBQ of length 1 + ϵ. By our work
before, all such rhombi are distinct. Furthermore, windmill collisions only happen inside
these rhombi by definition. Now, have Geoff move each of his windmills one by one to
Sasha’s windmills. If a windmill collision happens, have Geoff move the other windmill
out of the way inside the rhombus before moving the windmill by and then restore the
position of the other windmill. Hence, he can always get his windmills to coincide, as
desired.
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G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

Let D denote the foot of the A-altitude, and M the midpoint of BC. We claim that
R and Q both lie on line PM . That will solve the problem (M is the fixed point).

A

B CD

E

F

H

P

M

Q

R

By angle chasing, it is not hard to show that

∡FHE = ∡FEM.

Now,
∡FPR = ∡FHR = ∡FHE = ∡FEM = ∡FPM

as desired so P , R, M are collinear. Similarly, P , Q, M are collinear, as desired.
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G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

We present two solutions, one synthetic and by complex numbers.

A

B C

O

T

H

P
X

M

First solution (Zack Chroman) Let M be the midpoint of BC. Note that since
AP ⊥ BC and AT ⊥ AO ∥ PM , we find that P is the orthocenter of △ATM . Thus
Y = TP ∩AM satisfies ∠PYM = 90, so it lies on the 9-point circle.
It then suffices to note that the reflection X ′ of P over Y lies on the circumcircle of

(AMT ) = (TO), so ∠TX ′O = 90 =⇒ X = X ′.

Second solution (complex numbers, Evan Chen) Let Q denote the reflection of P
over M , the midpoint of BC.

Claim. We have QO ⊥ PT .

Proof. By complex numbers. We have

t =
aa(b+ c)− bc(a+ a)

aa− bc
=

a2(b+ c)− 2abc

a2 − bc

t− p =
a2(b+ c)− 2abc

a2 − bc
−
(
a+

b+ c

2

)
=

a2(12b+
1
2c− a) + (−a+ 1

2b+
1
2c)bc

a2 − bc

=
b+ c− 2a

2
· a

2 + bc

a2 − bc

q = 2 · b+ c

2
− p =

b+ c− 2a

2

Since a2+bc
a2−bc

∈ iR, the claim is proven.

Thus, QOX are collinear. By considering right triangle △PQX with midpoint M , we
conclude that MX = MP . Since the nine-point circle is the circle with diameter PM , it
passes through the midpoint of PX.
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G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

The trick is to invert the figure around a circle centered at A of arbitrary radius. We
let ω = ℓ∗ denote the image of ℓ under this inversion. Then, under the inversion, Evan’s
compass has the following behavior:

• Evan can draw a line through two points other than A; or

• Evan can draw a circle through three points other than A.

In other words, the point A is “invisible” to Evan, but Evan otherwise has a straightedge
and the same compass.

It is clear then that the answer to (ii) is no; since the point A is invisible it’s impossible
to construct any point depending on it.

Part (i) is equivalent to showing that Evan can construct the center of ω; we give one
construction here anyways. Take any cyclic quadrilateral WXY Z inscribed in ω, and
let P = WZ ∩XY . Then the circumcircles of △PWX and △PY Z meet again at the
Miquel point M , and the second intersection of (MXZ) and (MWY ) is the center of ω.

Remark. The proof of (ii) implies that it’s actually more or less impossible in this
context to construct any point other than the reflection of A, as a function of A and ℓ.

An alternative proof of (ii) is possible by inverting around a generic point P on ℓ with
radius PA; this necessarily preserves the entire construction, but the foot from A to ℓ is
not fixed by this inversion.
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G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)

We present many, many solutions. In all of them, we let H denote the common
orthocenter.

A

B

C

D

E

F

H

X Y

First solution by Simson lines (Vincent Huang) Let AH meet CE and Ω again at M
and A1, respectively, and P and Q be the projections of A1 onto BD and DF , respectively.
Note that PQ is the Simson line of A1 with respect to BDF . It is well known that this
Simson line bisects the segment between A1 and H. Hence, M lies on PQ. But P , M ,
and Q are respectively the projections of A1 onto DX, XY , and Y D, so A1 must lie on
the circumcircle of DXY , as desired.

Second solution by dual Desargues involution (Michael Ren) Let O and r be the
center and radius of Ω, respectively. Let E be the ellipse with foci O and H consisting
of the set of points P such that OP +HP = r. Note that as the reflections of H over
AC,CE,EA,BD,DF, FB lie on Ω, E is tangent to the sides of ACE and BDF . Let E
and AD meet CE at P and Q, respectively. By the dual of Desargues involution theorem
on quadrilateral ACPE with inscribed conic E , D(CE;XY ;PQ) is an involution. Hence,
the circumcircles of DCE, DXY , and DPQ are coaxial, so it suffices to show that
A1DPQ is cyclic, where A1 is the second intersection of AH and Ω. But note that A1

lies on OP , so ∠QDA1 = ∠ADA1 = π
2 − ∠OA1A = π

2 − ∠PA1A, which is the angle
between PA1 and PQ by the perpendicularity of AA1 and CE, as desired.

Third solution by angle chasing (Mihir Singhal) Let A1 be the reflection of H over
CE. Note A1 is on Ω so it suffices to show that DA1XY is cyclic. Let M be the foot of
the altitude from A to CE. Note that M is the midpoint of HA1 so since A1 is on Ω, M
must be on the nine-point circle of DBF . Let R and S be the feet of the altitudes from
F and B in DBF .

23



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

Note MXRH and MY SH are cyclic. Moreover, M lies on the nine-point circle of
△BDF , and hence ∡SMR = 2∡SDR. Then

∡XHY = ∡XHM + ∡MHY

= ∡XRM + ∡MSY = ∡DRM + ∡MSD

= −(∡RMS + ∡SDR) = ∡SMR+ ∡RDS

= 2∡SDR+ ∡RDS = ∡SDR = ∡Y DX.

Thus ∡XA1Y = −∡XHY = ∡RDS = ∡XDY , as needed.

Fourth solution by inversion (James Lin) Let K be the second intersection of Ω and the
perpendicular from A to CE. We want to show DKXY is cyclic. We invert about H. It’s
clear that now, A′C ′E′ and B′D′F ′ share the same circumcircle Ω′ and incenter H. Note
that K maps to the midpoint MA′ of the arc C ′E′ on Ω′ not containing A′. Also note that
X ′ is the intersection of circles (HB′D′) and (HC ′E′), which are centered at midpoint
MF ′ of the arc B′D′ on Ω′ not containing F ′ and the midpoint MD′ of the arc B′F ′ on Ω′

not containing D′, respectively. Thus, X ′ is the reflection of H over MA′MF ′ . Similarly,
Y ′ is the reflection of H over MA′MB′ . Then, note that MA′X = MA′H = MA′Y . Now
we reformulate the problem by erasing A′, C ′ and E′, as the rest of the problem can be
defined without them. The reformulated statement is that if we fix B,D,F,H and vary
MA′ along Ω′, then D′MA′X ′Y ′ is always cyclic.
We proceed with directed angles. Note that ∡X ′D′MA′ = ∡X ′D′H + ∡HD′MA′ =

∡MA′MF ′F + ∡MD′MF ′MA′ = ∡MD′MF ′F . Similarly, ∡Y ′D′MA′ = MD′MB′B =
−∡MD′MF ′F = −∡X ′DMA′ , so it follows that MA′ lies on an angle bisector of ∡X ′D′Y ′.
Assume that D′MA′ and X ′Y ′ are not perpendicular. Then from MA′X ′ = MA′Y ′, it
follows that D′MA′X ′ and D′MA′Y ′ have the same circumradius, and if they don’t have
the same circumcircle, then D′MA′ and X ′Y ′ must be perpendicular, a contradiction. So
D′X ′MA′Y ′ is cyclic. Hf D′MA′ and X ′Y ′ are perpendicular, then use the new problem
formulation (without A,C and E and just varying MA′) to move MA′ by a miniscule
amount. Then D′MA′ and X ′Y ′ will not be perpendicular, so D′X ′MA′Y ′ is cyclic both
after and before moving MA′ by continuity. We are done.

Fifth solution, by complex numbers (Carl Schildkraut) Let Ω be the unit circle, and
let A = a, etc. We have that

c+ e = h− a =⇒ c+ e

ce
= h̄− 1

a
=⇒ ce =

a(h− a)

ah̄− 1
.

Let T be the second intersection of the line through A perpendicular to CE and Ω. We
see that

t = −ce

a
= − h− a

ah̄− 1
.
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We endeavor to show that DTXY is a cyclic quadrilateral. We have that

x =
ce(b+ d)− bd(c+ e)

ce− bd

=

a(b+d)(h−a)

ah̄−1
− bd(h− a)

a(h−a)

ah̄−1
− bd

= (h− a)

(
a(b+ d)− bd(ah̄− 1)

a(h− a)− bd(ah̄− 1)

)
= (h− a)

(
ab+ ad− ab− ad− abd

f + bd

ab+ ad+ af − a2 − ab− ad− abd
f + bd

)

= (h− a)

(
bd(f − a)

(af + bd)(f − a)

)
=

bd(h− a)

af + bd
.

Similarly

y =
bf(h− a)

ab+ df
.

So, we want to show that

d,− h− a

ah̄− 1
,
bd(h− a)

af + bd
,
bf(h− a)

ab+ df

are concyclic. This is equivalent to, dividing each by h− a and reciprocating,

h− a

d
, 1− ah̄, 1 +

af

bd
, 1 +

ab

df

being concyclic. This is equivalent to, subtracting 1 and multiplying by bdf ,

bf(b+ f − a),−a(bd+ bf + df), ab2, af2

being concyclic. This is equivalent to, adding abf and dividing by b+ f ,

bf,−ad, ab, af

being concyclic. However, all of these points lie on the unit circle, finishing the proof.

Sixth solution by complex numbers (Evan Chen) As usual let Ω denote the unit circle.
We immediately have

c+ e = b+ d+ f − a

and thus
1

c
+

1

e
=

c+ e

ce
=

1

b
+

1

d
+

1

f
− 1

a

=⇒ ce =
b+ f + d− a
1
b +

1
f + 1

d − 1
a

.

These two equations let us eliminate c and e, leaving only a, b, d, f .
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Now consider the point p = − ce
a on the circumcircle. We compute

x− p

b− p
=

x+ ce
a

b+ ce
a

=

bd(c+e)−ce(b+d)
bd−ce + ce

a

b+ ce
a

=
abcd+ abde− abce− adce+ bdce− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/a+ 1/e+ 1/c− 1/d− 1/b)− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/f)− (ce)2

(ab+ ce)(bd− ce)
=

(ce)(abd− cef)

f(ab+ ce)(bd− ce)

Now, we write

ab+ ce =
ab(1b +

1
f + 1

d − 1
a) + (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
ab(1d + 1

f ) + d+ f
1
b +

1
f + 1

d − 1
a

=

1
df (d+ f)(ab+ df)

1
b +

1
f + 1

d − 1
a

bd− ce =
bd(1b +

1
d + 1

f − 1
a)− (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
bd( 1f − 1

a) + (a− f)
1
b +

1
f + 1

d − 1
a

=

1
af (a− f)(bd+ af)

1
b +

1
f + 1

d − 1
a

abd− cef = abd− f(b+ f + d− a)
1
b +

1
f + 1

d − 1
a

=
abd(1b +

1
f + 1

d − 1
a)− f(b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(abdbf − f) + b(a− d) + f(a− d)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(adf − f + (a− d))

1
b +

1
f + 1

d − 1
a

=

1
f (b+ f)(a− f)(f + d)

1
b +

1
f + 1

d − 1
a

.

Putting that all together gives

x− p

b− p
=

ce · adf(b+ f)(1b +
1
f + 1

d − 1
a)

(ab+ df)(bd+ af)

which is symmetric in d and f , so the analogous calculation with y−p
f−p yields the same

result. Consequently, P is the center of the spiral similarity sending Y F to BX, as
desired.

Remark. Philosophical point: it’s necessary to use both a+ c+ e = b+ d+ f and its
conjugate, to capture two degrees of freedom.
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Seventh solution, by inversion and moving points (Anant Mudgal, unedited) Let H
be the common orthocenter. Pick any two vertices X,Y of either △ACE or △BDF and
notice that △XYH has circumradius equal to the radius of Ω. Now invert at H. We
obtain the following equivalent problem.

Let ABCDEF be a cyclic hexagon with △ACE and △BDF sharing a com-
mon incircle ω centered at point H. Let ⊙(HBD),⊙(HFD) meet ⊙(CHE)
again at points X and Y respectively. Let M be the midpoint of arc CE not
containing A. Then ⊙(DXY ) passes through point M .

Let ω touch CE at point N and L = AD∩CE. Let P = DB∩CE and Q = DF ∩CE.
By Dual of Desragues Involution Theorem on circumscribed ACEN and point D; we
conclude (DN,DL), (DC,DE), (DP,DQ) are pairs of an involution. Notice that P has
equal powers in ⊙(HBD),⊙(CHE) hence P lies on XH. Similarly, Q lies on Y H.
Let HN,HL meet ⊙(CHE) again at S, T . Project through H to conclude that

(C,E), (X,Y ), (S, T ) are pairs of an involution on the circle ⊙(CHE). Thus, we conclude
that lines CE,XY , ST concur.

Claim. CE,ST ,DM concur.

Proof. Animate D on ⊙(ACE); then D 7→ L 7→ T is projective. Let U = DM ∩CE and

V = ST ∩ CE then D 7→ U and D 7→ V are also projective. Thus to show W
def
:= U ≡ V

we need to verify for three choices of point D; namely we pick {C,E,M}. These are all
clearly true and the lemma is proved.

Finally, notice WX ·WY = WC ·WE = WD ·WM proving DXYM is cyclic.
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

Denote by Ω and H the circumcircle and orthocenter of △ABC. Let T lie on Ω such
that AT ∥ BC. Let △ABC have orthocenter H.

A

B C

O

D

E

F

P

XY

First solution, synthetic First we prove a lemma.

Claim. The points H,P, T are collinear.

Proof. Let HT meet Ω at P ∗ ̸= T . Let AD meet Ω at K ̸= A. By homothety at K,
HT ∥ DO. By angle chasing, ∠P ∗AD = ∠P ∗AK = ∠P ∗TK = ∠P ∗TO = ∠OP ∗T =
∠P ∗OD, so P ∗ lies on the circumcircle of △AOD. Therefore, P ≡ P ∗ as desired.

We now provide two finishes.

• First finish: By DDIT on AEHF , the pairs of lines (PA,PH), (PB,PC), (PE,PF )
are part of a single involution, so AT,BC,XY are concurrent. Since AT ∥ BC,
this implies that XY ∥ BC as desired.

• Second finish: Let Q = AP ∩EF . By inversion at A, BFPQ, CEPQ, DHPQ are
all cyclic. By the lemma, this implies that ∠ABC + ∠ACB = ∠APT = ∠APH =
∠QPH = ∠QDH = ∠QAH, so DQ ⊥ EF .

Let G = EF ∩ BC; since (G,D;B,C) = −1, ∠BQD = ∠DQC. Thus ∠BAY =
∠BPY = ∠BPF = ∠BQF = ∠CQE = ∠CPE = ∠CPX = ∠CAX, so XY ∥
BC as desired.
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Second solution by complex numbers (Adam Ardeishar) Let ABC be the complex
unit circle. Then D = 1

2(a+ b+ c− bc
a ), and we know

p− a

p− o
· d− o

d− a
∈ R

p− a

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=

1
p − 1

a
1
p

·
1
a + 1

b +
1
c −

a
bc

− 1
a + 1

b +
1
c −

a
bc

1

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=
−1

a
·

1
a + 1

b +
1
c −

a
bc

1
b +

1
c −

1
a − a

bc

−a

p
· a

2 + ab+ ac− bc

ab+ ac− a2 − bc
=

bc+ ab+ ab− a2

ab+ ac− bc− a2

p = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc

Now note that p+ x = e+ pxe, so x = p−e
pe−1 But we compute that

p− e = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
− 1

2
(a+ b+ c− ac

b
)

=
a3b+ a3 + 2a2b2 + a2bc+ ab3 + ab2c+ b3c+ b2c2 − a2c2

2b(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ab− ac+ bc)

2b(a2 − ab− ac− bc)

And also compute

pe− 1 = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
· 1
2
(
1

a
+

1

b
+

1

c
− b

ac
)− 1

=
a3b+ a3c+ a2bc+ a2c2 + ab2c+ 2abc2 + b3c+ b2c2 − ab3

2bc(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ac+ bc− ab)

2bc(a2 − ab− ac− bc)

So

x =

(a+b)(b+c)(a2+ab−ac+bc)
2b(a2−ab−ac−bc)

(a+b)(b+c)(a2+ac+bc−ab)
2bc(a2−ab−ac−bc)

= c · a
2 + ab+ bc− ac

a2 + ac+ bc− ab

By symmetry,

y = b · a
2 + ac+ bc− ab

a2 + ab+ bc− ac

Now note that xy = bc to finish.
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N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

Answer: {a1 . . . , an} = {1, . . . , n}. This works since

(x+ n) . . . (x+ 1)

n!
=

(
x+ n

n

)
∈ Z

so we now show that it is the only possibility. There are two approaches.

First solution Let P (x) = (x+ a1) . . . (x+ an). Then, a1 . . . an should divide the nth
finite difference of P , which is n!. But

a1 . . . an | n! =⇒ {a1 . . . , an} = {1, . . . , n}

for size reasons.

Second solution (Kevin Sun) Let s+ 1 be the smallest positive integer not in our set
A and denote B = A \ {1, . . . , s}.
It’s clear that the divisibility holds for negative x as well. Set x = −s− 1 to obtain

Z ∋ 1

a1 . . . an

∏
a∈A

(x+ a)

=
∏
a∈A

(
1 +

x

a

)
=

∏
a∈{1,...,s}

(
1− s+ 1

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
∏

a∈{1,...,s}

(
a− (s+ 1)

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
(−s)(−(s− 1)) . . . (−1)

1 · 2 · · · · · s
·
∏
b∈B

(
1− s+ 1

b

)
= (−1)|A|

∏
b∈B

(
1− s+ 1

b

)
.

If B is nonempty this has magnitude strictly between 0 and 1, (since minB > s+ 1 and
thus each term is in (0, 1)). Thus B is empty and A = {1, . . . , s}.
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N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

For (a), note that for any t, the numbers t2 + 1, t2 + 2, t2 + 4 are good. So it suffices
to show t2 + 3 is good infinitely often, that is, t2 + 3 = 2x + y2 has infinitely many
nonnegative integer solutions (since for fixed t there are finitely many (x, y)). But this
rearranges t2 − y2 = 2x − 3 which has a solution for every x.

We now turn to the laborious task of (b), determining all sets of five consecutive good
numbers. The answers are the six tuples {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {8, 9, 10, 11, 12},
{9, 10, 11, 12, 13}, {288, 289, 290, 291, 292}, {289, 290, 291, 292, 293}. These all work since

1 = 20 + 02, 2 = 20 + 12, 3 = 21 + 12,

4 = 22 + 02, 5 = 22 + 12, 6 = 21 + 22,

8 = 23 + 02, 9 = 23 + 12, 10 = 20 + 32,

11 = 21 + 32, 12 = 23 + 22, 13 = 22 + 32,

288 = 25 + 162, 289 = 26 + 152, 290 = 20 + 172,

291 = 21 + 172, 292 = 28 + 62, 293 = 22 + 172.

We now show they are the only ones. First, consider the following table which shows
2x + y2 (mod 8):

x = 0 x = 1 x = 2 x ≥ 3

y ≡ 1 (mod 2) 2 3 5 1
y ≡ 0 (mod 4) 1 2 4 0
y ≡ 2 (mod 4) 5 6 0 4

Note that from this table, no good number is 7 (mod 8). Thus any five good numbers
must have a 3 (mod 8) number. By table can only occur if that good number is of the
form t2 + 21 = t2 + 2 for an odd integer t.
We now have several cases.
Case 1: Suppose the five good numbers are {t2 + 1, t2 + 2, t2 + 3, t2 + 4, t2 + 5}.
Note that t2+5 ≡ 6 (mod 8), and by table, this can only occur if t2+5 = s2+22 = s2+4

for some integer s; hence t2 − s2 = 1, so t = 1 and s = 0. This gives the solution set
{2, 3, 4, 5, 6}.

Case 2: Suppose the five good numbers are {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4}.
Since t2 is good, we have t2 = 2w+z2 for some w and z, which we write as (t−z)(t+z) =

2w.
We now split into cases.

• Subcase 2.1: We handle the situation where w < 4.

– If w = 0, then we get t = 1, which gives the solution {1, 2, 3, 4, 5}.
– If w = 1, then there are no solutions by taking mod 4.
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– If w = 2, then t2 = 4 + z2 which implies t = 2, but t was odd.

– If w = 3, we get t2 = 8+ z2 which implies t = 3, which gives {9, 10, 11, 12, 13}.
– If w = 4, we get t2 = 16 + z2 which together with t odd implies t = 5, which

gives {25, 26, 27, 28, 29}. However, the number 28 is not good, so this is not a
solution.

• Subcase 2.2: Suppose w ≥ 5. As gcd(t − z, t + z) | 2t we must have t − z = 2,
t+ z = 2w−1, and thus t = 1

2

(
2 + 2w−1

)
= 2w−2 + 1. Since t was odd, we actually

have w ≥ 3.

But t2 + 3 is also good, so write

t2 + 3 = 2x + y2.

So we split into cases again.

– Subcase 2.2.1: We handle the case x < 3.

∗ If x = 0, we get t2 + 2 = y2 which has no solutions.

∗ If x = 1, we get t2 + 1 = y2 which implies t = 0, but t is supposed to be
odd.

∗ If x = 2, then we get t2 = y2 +1 which implies t = 1, which was an earlier
solution.

– Subcase 2.2.2: Otherwise, assume x ≥ 3.

2x + y2 = t2 + 3

=⇒ 2x + y2 =
(
2w−2 + 1

)2
+ 3

= 22w−4 + 2w−1 + 4

=⇒ 22w−6 + 2w−3 + 1 = 2x−2 + (y/2)2

since y is clearly even; the last line implies y/2 is odd, since 2w − 6 > 0,
w − 3 > 0, x− 2 > 0.

Let c = w − 3 ≥ 2, a = x− 2 ≥ 1, b = y/2 ≥ 1 for brevity; then the equation
rewrites as

22c + 2c + 1 = 2a + b2.

We rewrite this as

(2c + 1− b)(2c + 1 + b) = (2c + 1)2 − b2 = 2a + 2c ≥ 0.

In light of this, we have 2a + 2c ≥ (2c + 1)2 − 22c > 2c+1, so 2a > 2c, ergo
a > c. Thus we may further write

(2c + 1− b)(2c + 1 + b) = 2c(2a−c + 1).

The factors on the left-hand side are nonnegative and have gcd dividing 2b,
hence one of them has at most one factor of 2. So one of the factors must be
divisible by 2c−1. Thus, b ≡ ±1 (mod 2c−1).

But, b < 2c + 1. So we have four possibilities:

∗ Subcase 2.2.2.1: suppose b = 1. Then we get 22c + 2c = 2a, which is
impossible.
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∗ Subcase 2.2.2.2: suppose b = 2c−1 − 1. Then we get (2c−1 + 2)(2c +
2c−1) = 2c(2a−c + 1) and hence 3 · 2c−2 = 2a−c − 2. This implies a− c = 3
and c− 2 = 1, so c = 3, or w = 6, hence t = 2w−2 + 1 = 17.

This gives {289, 290, 291, 292, 293} which indeed works.

∗ Subcase 2.2.2.3: suppose b = 2c−1+1. Then we get 2c−1(2c+2c−1+2) =
2c(2a−c + 1), or 2c−1 + 2c−2 + 1 = 2a−c + 1, which is impossible.

∗ Subcase 2.2.2.4: suppose b = 2c − 1. This gives 2 · 2c+1 = 2c(2a−c + 1),
which is impossible.

Case 3: Suppose the five good numbers are {t2 − 1, t2, t2 + 1, t2 + 2, t2 + 3}.
In that case, {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4} is also a set of five consecutive good

numbers. Using case 2, the new candidate this now gives are {8, 9, 10, 11, 12} and
{288, 289, 290, 291, 292}, which work.
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N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

The answer is a2018 ≤ 21009 − 1. To see this is attainable, consider the sequence

an =

{
1 n odd

2n/2 − 1 n even.

This can be checked to work, so we prove it’s optimal.
We have a2 | a1 + a2 = 1 + a2 =⇒ a2 = 1.
Now consider an integer n, and let s = sn = a1 + · · ·+ an. Then

an+1 | s
an+2 | s+ an+1

an+2 ≡ 1 (mod an+1).

Thus, gcd(an+2, an+1) = 1. So an+2 ≤ s+an+1

an+1
, and thus

an+1 + an+2 ≤ 1 + an+1 +
s

an+2
≤ s+ 2.

So, we have

a1 + a2 = 2

a3 + a4 ≤ 2 + 2 = 4

a5 + a6 ≤ (2 + 4) + 2 = 8

a7 + a8 ≤ (2 + 4 + 8) + 2 = 16

...

a2017 + a2018 ≤ 21009.

Thus a2018 ≤ 21009 − a2017 ≤ 21009 − 1.

Remark (Motivational notes). It’s very quick to notice an+1 | a1+ · · ·+an, which already
means that given the first n terms of the sequence there are finitely many possibilities
for the next one. Thus it’s possible to play with “small cases” by drawing a large tree.

When doing so, one might hope that somehow an = a1 + · · ·+ an−1 is achievable, but
quickly notices in such a tree that if an is the sum of all previous terms, then an+1 = 1 is
forced. This gives the idea to try to look at the terms in pairs, rather than one at a time,
and this gives the correct bound.

As for extracting the equality case from this argument, there are actually two natural
curves to try. We have a3 | 1+1 = 2. If we have a3 = 2 we get a4 = 1, a5 ≤ 5, but then a6
actually gets stuck. But if we have a3 = 1 instead, we get a4 = 3, a5 = 1, a6 = 7, and so
on; pushing this gives the equality case above, seen to work. I think it’s quite unnatural
to guess the correct construction before having the corresponding s+ 2 estimate.
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N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)

This is possible for n = 4 or n prime, in which case d = n − 1 is best possible. Let
P (Z/n) denote the range of a polynomial modulo n.

• We first note that if n = q1 . . . qk is the product of k ≥ 2 distinct prime powers,
then

|P (Z/n)| =
k∏

i=1

|P (Z/qi)|.

Hence any subset S with size n− 1 is not coverable.

• If n = pe is a prime power with other than 4 with e ≥ 2, consider the set
S = {0, 1, . . . , p− 1, p}. We claim it is not coverable.

Indeed, if P covers it, WLOG P (0) = 0. Now, P is surjective modulo p, hence
bijective, and thus P (x) ≡ 0 (mod p) ⇐⇒ x ≡ 0 (mod p). Now we can write

P (x) = a1x+ a2x
2 + . . . .

– If a1 ≡ 0 (mod p), then x ≡ 0 (mod p) =⇒ P (x) ≡ 0 (mod p2), so p does
not appear in the image.

– If a1 ̸≡ 0 (mod p), then p, 2p, . . . all appear in the image, which is wrong for
n > 4.

• Let n = 4, and consider S (mod 4).

– If S = {k} take P (x) = k.

– If S = {k, k + 1} take P (x) = x2 + k.

– If S = {k, k + 2} take P (x) = 2x2 + k.

– If S = {k − 1, k, k + 1} take P (x) = x3 + k.

We claim also the example S = {−1, 0, 1} is not 2-coverable. Indeed, WLOG
P (0) = 0 so P (x) = x(x+ c). Then P (2) ≡ 0 (mod 4), meaning c is even. But
then P (1) ≡ c+ 1 (mod 4) and P (−1) ≡ 1− c (mod 4), so P (1) ≡ P (−1).

– If S = {0, 1, 2, 3} take P (x) = x.

• Let n = 2.

– If S = {k} take P (x) = k.

– If S = {0, 1} take P (x) = x. This is obviously not 0-coverable.
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• If n = p is an odd prime, we claim S = {1, . . . , p − 1} is not (p − 2)-coverable.
Indeed, suppose P (x) = ap−2x

p−2 + · · ·+ a0 covered it. Then∑
x

P (x) ≡
∑
k

ak
∑
x

xk ≡ 0 (mod p).

However, if P (Z/p) = {1, . . . , p − 1} then some element appears twice and the
others appear once. If k is the repeated element though, then

∑
x P (x) = (1+ · · ·+

(p− 1)) + k ≡ k ̸≡ 0 (mod p).
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Problem 1. Let P (x) be a polynomial with integer coefficients such that P (0) = 1, and
let c > 1 be an integer. Define x0 = 0 and xi+1 = P (xi) for all integers i ≥ 0. Show that
there are infinitely many positive integers n such that gcd(xn, n + c) = 1.

Problem 2. Let m,n ≥ 2 be integers. Carl is given n marked points in the plane and
wishes to mark their centroid∗. He has no standard compass or straightedge. Instead, he
has a device which, given marked points A and B, marks the m − 1 points that divides
segment AB into m congruent parts (but does not draw the segment).

For which pairs (m,n) can Carl necessarily accomplish his task, regardless of which n
points he is given?

Problem 3. Let n ≥ 3 be a fixed integer. A game is played by n players sitting in a
circle. Initially, each player draws three cards from a shuffled deck of 3n cards numbered
1, 2, . . . , 3n. Then, on each turn, every player simultaneously passes the smallest-numbered
card in their hand one place clockwise and the largest-numbered card in their hand one
place counterclockwise, while keeping the middle card.

Let Tr denote the configuration after r turns (so T0 is the initial configuration). Show
that Tr is eventually periodic with period n, and find the smallest integer m for which,
regardless of the initial configuration, Tm = Tm+n.

∗Here, the centroid of n points with coordinates (x1, y1), . . . , (xn, yn) is the point whose coordinates
are

(
x1+···+xn

n
, y1+···+yn

n

)
.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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Year: 2019
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Sunday, June 16, 2019
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Problem 4. Carl is given three distinct non-parallel lines `1, `2, `3 and a circle ω in the
plane. In addition to a normal straightedge, Carl has a special straightedge which, given a
line ` and a point P , constructs a new line passing through P parallel to `. (Carl does not
have a compass.) Show that Carl can construct a triangle with circumcircle ω whose sides
are parallel to `1, `2, `3 in some order.

Problem 5. Let S be a nonempty set of positive integers so that, for any (not necessarily
distinct) integers a and b in S, the number ab+ 1 is also in S. Show that the set of primes
that do not divide any element of S is finite.

Problem 6. Snorlax chooses a functional expression† E which is a finite nonempty string
formed from a set x1, x2, . . . , of variables and applications of a function f , together with
addition, subtraction, multiplication (but not division), and fixed real constants. He then
considers the equation E = 0, and lets S denote the set of functions f : R → R such that
the equation holds for any choices of real numbers x1, . . . , xk. (For example, if Snorlax
chooses the functional equation

f(2f(x1) + x2)− 2f(x1)− x2 = 0,

then S consists of one function, the identity function.)

(a) Let X denote the set of functions with domain R and image exactly Z. Show that
Snorlax can choose his functional equation such that S is nonempty but S ⊆ X.

(b) Can Snorlax choose his functional equation such that |S| = 1 and S ⊆ X?

†These can be defined formally in the following way: the set of functional expressions is the minimal
one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any integer i, the
variable xi is a functional expression, and (iii) if V and W are functional expressions, then so are f(V ),
V + W , V −W , and V ·W .

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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Problems

A1. Let a, b, c be positive reals such that 1
a + 1

b + 1
c = 1. Show that

aabc+ bbca+ ccab ≥ 27(ab+ bc+ ca).

(Milan Haiman)

A2. Find all functions f : Z → Z with the property that for any surjective function
g : Z→ Z, the function f + g is also surjective.

(Sean Li)

A3. Let n ≥ 3 be a fixed positive integer. Evan has a convex n-gon in the plane and
wishes to construct the centroid of its vertices. He has no standard ruler or compass, but
he does have a device with which he can dissect the segment between two given points
into m equal parts. For which m can Evan necessarily accomplish his task?

(Holden Mui and Carl Schildkraut)

A4. Find all nondecreasing functions f : R→ R such that for all real numbers x, y,

f(f(x)) + f(y) = f(x+ f(y)) + 1.

(Carl Schildkraut)

A5. Define the set of functional expressions to be the smallest set of expressions so that
the following properties hold:

• Any variable xi, or any fixed real number, is a functional expression.

• Given any functional expression V , the expression f(V ) is a functional expression,
and given any two functional expressions V,W , the expressions V +W and V ·W
are functional expressions.

A functional equation is an equation of the form V = 0 for any functional expression V ;
a function satisfies it if that equation holds for all choices of each xi in the real numbers.

(For example, the equation f(x1) + f(x2) + (−1)(x1 + x2) = 0 is a functional equation
satisfied by only the identity function, while the equation f(x1)+f(x2)+(−1)f(x1+x2) =
0 is a functional equation satisfied by infinitely many functions. The equation f( 1

1+x21
) = 0

is not a functional equation at all.)
Does there exist a functional equation satisfied by a exactly one function f , and the

function f satisfies f(R) = Z?

(Carl Schildkraut)
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C1. Let n ≥ 3 be fixed positive integer. Elmo is playing a game with his clone. Initially,
n ≥ 3 points are given on a circle. On a player’s turn, that player must draw a triangle
using three unused points as vertices, without creating any crossing edges. The first
player who cannot move loses. If Elmo’s clone goes first and players alternate turns,
which player wins for each n?

(Milan Haiman)

C2. Adithya and Bill are playing a game on a connected graph with n > 2 vertices and
m edges. First, Adithya labels two of the vertices A and B, so that A and B are distinct
and non-adjacent, and announces his choice to Bill. Then Adithya starts on vertex A
and Bill starts on B.

Now the game proceeds in a series of rounds in which both players move simultaneously.
In each round, Bill must move to an adjacent vertex, while Adithya may either move to
an adjacent vertex or stay at his current vertex. Adithya loses if he is ever on the same
vertex as Bill, and wins if he reaches B alone. Adithya cannot see where Bill is, but Bill
can see where Adithya is.

Given that Adithya has a winning strategy, what is the maximum possible value of m,
in terms of n?

(Steven Liu)

C3. In the game of Ring Mafia, there are 2019 counters arranged in a circle, 673 of
these which are mafia, and the remaining 1346 which are town. Two players, Tony and
Madeline, take turns with Tony going first. Tony does not know which counters are mafia
but Madeline does.

On Tony’s turn, he selects any subset of the counters (possibly the empty set) and
removes all counters in that set. On Madeline’s turn, she selects a town counter which
is adjacent to a mafia counter and removes it. (Whenever counters are removed, the
remaining counters are brought closer together without changing their order so that they
still form a circle.) The game ends when either all mafia counters have been removed, or
all town counters have been removed.

Is there a strategy for Tony that guarantees, no matter where the mafia counters are
placed and what Madeline does, that at least one town counter remains at the end of the
game?

(Andrew Gu)

C4. Let n ≥ 3 be a positive integer. In a game, n players sit in a circle in that order.
Initially, a deck of 3n cards labeled {1, . . . , 3n} is shuffled and distributed among the
players so that every player holds 3 cards in their hand. Then, every hour, each player
simultaneously gives the smallest card in their hand to their left neighbor, and the largest
card in their hand to their right neighbor. (Thus after each exchange, each player still
has exactly 3 cards.)

Prove that each player’s hand after the first n − 1 exchanges is their same as their
hand after the first 2n− 1 exchanges.

(Carl Schildkraut and Colin Tang)
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C5. Given a permutation of 1, 2, 3, . . . , n, with consecutive elements a, b, c (in that
order), we may perform either of the moves:

• If a is the median of a, b, and c, we may replace a, b, c with b, c, a (in that order).

• If c is the median of a, b, and c, we may replace a, b, c with c, a, b (in that order).

What is the least number of sets in a partition of all n! permutations, such that any two
permutations in the same set are obtainable from each other by a sequence of moves?

(Milan Haiman)

G1. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. Let BH
intersect AC at E, and let CH intersect AB at F . Let AH intersect Γ again at P 6= A.
Let PE intersect Γ again at Q 6= P . Prove that BQ bisects segment EF .

(Luke Robitaille)

G2. Snorlax is given three pairwise non-parallel lines `1, `2, `3 and a circle ω in the
plane. In addition to a normal straightedge, Snorlax has a special straightedge which
takes a line ` and a point P and constructs a new line `′ passing through P parallel to `.
Determine if it is always possible for Snorlax to construct a triangle XY Z such that the
sides of 4XY Z are parallel to `1, `2, `3 in some order, and X,Y, Z each lie on ω.

(Vincent Huang)

G3. Let 4ABC be an acute triangle with incenter I and circumcenter O. The incircle
touches sides BC,CA, and AB at D,E, and F respectively, and A′ is the reflection of A
over O. The circumcircles of ABC and A′EF meet at G, and the circumcircles of AMG
and A′EF meet at a point H 6= G, where M is the midpoint of EF . Prove that if GH
and EF meet at T , then DT ⊥ EF .

(Ankit Bisain)

G4. Let triangle ABC have altitudes BE and CF which meet at H. The reflection
of A over BC is A′. The circumcircles of 4AA′E and 4AA′F meet the circumcircle of
4ABC at P 6= A and Q 6= A respectively. Lines BC and PQ meet at R. Prove that
EF ‖ HR.

(Daniel Hu)

G5. Given a triangle ABC for which ∠BAC 6= 90◦, let B1, C1 be variable points on
AB,AC, respectively. Let B2, C2 be the points on line BC such that a spiral similarity
centered at A maps B1C1 to C2B2. Denote the circumcircle of AB1C1 by ω. Show that if
B1B2 and C1C2 concur on ω at a point distinct from B1 and C1, then ω passes through
a fixed point other than A.

(Maxwell Jiang)
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G6. Let ABC be an acute scalene triangle and let P be a point in the plane. For
any point Q 6= A,B,C, define TA to be the unique point such that 4TABP ∼ 4TAQC
and 4TABP,4TAQC are oriented in the same direction (clockwise or counterclockwise).
Similarly define TB, TC .

(a) Find all P such that there exists a point Q with TA, TB, TC all lying on the
circumcircle of 4ABC. Call such a pair (P,Q) a tasty pair with respect to 4ABC.

(b) Keeping the notations from (a), determine if there exists a tasty pair which is also
tasty with respect to 4TATBTC .

(Vincent Huang)

N1. Let P be a polynomial with integer coefficients so that P (0) = 1. Let x0 = 0, and
let xi+1 = P (xi) for all i ≥ 0. Show that there are infinitely many positive integers n so
that gcd(xn, n+ 2019) = 1.

(Carl Schildkraut and Milan Haiman)

N2. Let f : Z>0 → Z>0 be a function. Prove that the following two conditions are
equivalent:

(i) f(m) + n divides f(n) +m for all positive integers m ≤ n;

(ii) f(m) + n divides f(n) +m for all positive integers m ≥ n.

(Carl Schildkraut)

N3. Let S be a nonempty set of integers so that, for any (not necessarily distinct)
integers a and b in S, ab+ 1 is also in S. Show that there are finitely many (possibly
zero) primes which do not divide any element of S.

(Carl Schildkraut)

N4. A positive integer b ≥ 2 and a sequence a0, a1, a2, . . . of base-b digits 0 ≤ ai < b
is given. It is known that a0 6= 0 and the sequence {ai} is eventually periodic but has
infinitely many nonzero terms. Let S be the set of positive integers n so that the base-b
number (a0a1 . . . an)b is divisible by n. Given that S is infinite, show that there are
infinitely many primes dividing at least one element of S.

(Carl Schildkraut and Holden Mui)

N5. Let m be a fixed even positive integer. Find all positive integers n for which there
exists a bijection f from {1, . . . , n} to itself such that for all x, y ∈ {1, . . . , n} with mx−y
divisible by n, we also have

(n+ 1) | f(x)m − f(y).

(Milan Haiman and Carl Schildkraut)
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Solutions
A1. Let a, b, c be positive reals such that 1

a + 1
b + 1

c = 1. Show that

aabc+ bbca+ ccab ≥ 27(ab+ bc+ ca).

(Milan Haiman)

We present two solutions.

First solution by Jensen (Ankan Bhattacharya) Applying the change of variable
(x, y, z) = ( 1a ,

1
b ,

1
c ), we wish to prove that

x1−1/x + y1−1/y + z1−1/z ≥ 27

whenever x, y, z > 0 and x+ y + z = 1.
We will prove that f(x) = x1−1/x is convex on R>0, which will establish the result. A

calculation shows that

f ′(x) = x−1/x
(
x−1 log x+ 1− x−1

)
f ′′(x) = x−1/x

(
x−3(log x− 1)2 + x−2

)
which is positive.

Second solution (Jirayus Jinapong) Dividing both sides by abc, we wish to show
aa−1 + bb−1 + cc−1 ≥ 27. In fact, we prove the following stronger claim.

Claim — We have aa−1bb−1cc−1 ≥ 729.

Proof. Note that a, b, c > 1. By weighted AM-GM, we have

2

a+ b+ c− 3
=
∑
cyc

a− 1

a+ b+ c− 3
· 1

a
≥
∏
cyc

(
1

a

) a−1
a+b+c−3

Therefore, we have

aa−1bb−1cc−1 ≥
(
a+ b+ c+ 3

2

)a+b+c−3
.

Since the given implies a+ b+ c ≥ 9
1/a+1/b+1/c = 9, we get the result.

8



21st ELMO 2019 Shortlisted Problems

A2. Find all functions f : Z → Z with the property that for any surjective function
g : Z→ Z, the function f + g is also surjective.

(Sean Li)

Constant functions f work, so we prove that when f is nonconstant it is possible to
find surjective g such that f + g is never equal to zero.

Note that the problem remains the same if we replace the domains by a countable set
S = {s0, s1, . . . } with the order of the elements being irrelevant. So we will do so to ease
notation.

We consider two cases.

• First, suppose that f has the form

f(s0) = t0

f(s1) = t1
...

f(sn) = tn

f(sn+1) = c

f(sn+2) = c

f(sn+3) = c

...

where none of the ti’s equals zero. In other words, f is equal to some constant c
for cofinitely many values. Since f is nonconstant, n > 0.

Then it suffices to define g by letting g(s0) = −c, and then picking g(s1), g(s2),
. . . , g(sn) to be large positive integers exceeding max |ti|, and then picking g(sn+1),
. . . to be the remaining unchosen integers in some order.

• Otherwise, we claim the following algorithm works: we define g(sn) inductively by
letting it equal the smallest integer (in absolute value, say) which has not yet been
chosen, and is also not equal to −f(sn).

The resulting function f+g avoids zero by definition; we just need it to be surjective,
and this is true because for any constant c, there are infinitely many n for which
f(sn) 6= −c; so c will get chosen by the (2c+ 1)st such n.
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A3. Let n ≥ 3 be a fixed positive integer. Evan has a convex n-gon in the plane and
wishes to construct the centroid of its vertices. He has no standard ruler or compass, but
he does have a device with which he can dissect the segment between two given points
into m equal parts. For which m can Evan necessarily accomplish his task?

(Holden Mui and Carl Schildkraut)

The following solution was given by Ankan Bhattacharya. We ignore the hypothesis
that the n vertices are convex. The given task is easily seen to be equivalent to the
following one:

Evan writes the n vectors (n, 0, 0, . . . ), (0, n, 0, . . . ), . . . , (0, 0, . . . , n) on a
board. For any two vectors a and b on the board, Evan may write the vector
k
ma + `

mb for any nonnegative integers k, ` summing to m. The goal is to
write (1, . . . , 1).

We claim that the answer is that Evan can succeed if and only if m is divisible by 2
and every prime dividing n.

Proof of necessity: It is clear that m must be divisible by every prime factor p of n,
since otherwise entries on the board will always be zero modulo p.

Now suppose n is odd; we show 2 | m nonetheless. The initial given vectors are
permutations of

(1, 0, . . . , 0︸ ︷︷ ︸
n−1

) (mod 2).

The desired vector then is (1, . . . , 1) (mod 2). However, it is easy to see that no new
vectors (modulo 2) can be added. Hence if n is odd then 2 | m as well.

Proof of sufficiency: It is enough to prove that if n = 2p with p an odd prime, then
m = 2p is valid.

We say a achievable multiset S is one for which the elements are positive integers
with sum 2p and Evan can achieve the vector whose nonzero entries coincide with that
multiset. We start with S = {1, p − 1, 1, p − 1} as an achievable multiset. Thereafter,
note that the following operations preserve achievability:

(a) replace an even k with two copies of k
2 ,

(b) replace two different numbers k and ` of the same parity with two copies of k+`
2 ,

Note that every move decreases the sum of the squares (say), so consider an achievable
multiset S at a situation when no more moves are possible. It must be constant then (as
all numbers are odd and equal). Moreover all the entries are less than p. So we must
have S = {1, 1, . . . , 1} as needed.

10
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A4. Find all nondecreasing functions f : R→ R such that for all real numbers x, y,

f(f(x)) + f(y) = f(x+ f(y)) + 1.

(Carl Schildkraut)

Here is Ankan Bhattacharya’s solution.

Part I: answers. For each positive integer n and real 0 ≤ α < 1, the functions

f−n,α(x) = 1
nbnx+ αc+ 1 and f+n,α(x) = 1

ndnx− αe+ 1,

along with f0(x) = 1 and f∞(x) = x+ 1, are solutions (and they are all). The verification
that they are valid solutions is left to the curious reader.

Part II: substitution. For the converse direction, it will be more helpful to work
with the function g(x) = f(x)− 1, which is also nondecreasing.

Lemma

We have g(0) = 0, g(x+ 1) = g(x) + g(1), and

Q(x, y) : g(x+ g(y)) = g(x) + g(y).

Proof. The original functional equation reads

P (x, y) : g
(
g(x) + 1

)
+ g(y) = g

(
x+ g(y) + 1

)
.

• First of all, P (0, 0) gives g(0) = 0.

• Next,

P (x, 0) =⇒ g
(
g(x) + 1

)
= g(x+ 1),

P (0, y) =⇒ g(1) + g(y) = g
(
g(y) + 1

)
,

and in particular g(x+ 1) = g(x) + g(1). As a corollary, g is idempotent: g(g(x)) =
g(x).

This simplifies P (x, y) to the last part Q(x, y) of the claim.

Part III: analysis. We are done playing around with expressions and are ready to
do more serious analysis on g. If g(1) = 0 then clearly g(n) = 0 for every integer n so g
is zero. Hence suppose g(1) > 0.

Claim — If g is not the identity function, then g(1) = 1.

Proof. Write g(1) = c. Now note g(n) = cn for any positive integer n, and also g(cn) = cn
and g

(
c(n± 1)

)
= c(n± 1). Hence c(n± 1) never belong to the interval from n to cn,

which forces c = 1 upon taking n→∞.

We now denote by S = g(R) the image of g.

11



21st ELMO 2019 Shortlisted Problems

Claim — S is closed under subtraction.

Proof. Note Q
(
x− g(y), y

)
gives g(x)− g(y) = g

(
x− g(y)

)
.

Thus we have two cases.

• If S is dense, then by Q(0, y) the set of fixed points of g is dense, so g is identity.

• If S is not dense, then S (being closed under subtraction) must be of the form 1
nZ

for some positive integer n. As g must be non-decreasing, it follows that g−1(0)
is a half-open interval of length 1

n containing 0, and the desired characterization
follows.

12
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A5. Define the set of functional expressions to be the smallest set of expressions so that
the following properties hold:

• Any variable xi, or any fixed real number, is a functional expression.

• Given any functional expression V , the expression f(V ) is a functional expression,
and given any two functional expressions V,W , the expressions V +W and V ·W
are functional expressions.

A functional equation is an equation of the form V = 0 for any functional expression V ;
a function satisfies it if that equation holds for all choices of each xi in the real numbers.

(For example, the equation f(x1) + f(x2) + (−1)(x1 + x2) = 0 is a functional equation
satisfied by only the identity function, while the equation f(x1)+f(x2)+(−1)f(x1+x2) =
0 is a functional equation satisfied by infinitely many functions. The equation f( 1

1+x21
) = 0

is not a functional equation at all.)
Does there exist a functional equation satisfied by a exactly one function f , and the

function f satisfies f(R) = Z?

(Carl Schildkraut)

Yes, such a functional equation does exist. Here is Ankan Bhattacharya’s construction
(one of many).

We consider the following sequence.

Claim — The sequence

an =


0 n < 0,

m n = 2m− 2, m ∈ Z>0,

−m n = 2m− 1, m ∈ Z>0,

is the unique Z-indexed satisfying the five properties

• an = 0 for n < 0,

• a0 ∈ {0, 1},

• an+2 − 2an + an−2 = 0 for n ≥ 0,

• an − an−2 ∈ {±1} for n ≥ 0,

• an + an+1 ∈ {0, 1} for n ≥ 0.

Proof. Suppose a0 = 0. Then a2 = 2a0 − a−2 = 0, but a2 − a0 /∈ {−1, 1}, contradiction.
Thus a0 = 1. Now a−2 = 0 and a0 = 1, so by an easy induction a2n−2 = n for every
nonnegative integer n. Now note a2n−2 = n, a2n = n + 1, and a2n−2 + a2n−1 and
a2n−1 + a2n are both in {0, 1} for every n ≥ 0, so a2n−1 = −n for every n ≥ 0. The
end.

13
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Now we are ready to solve the problem. We claim that

0 = f
(
−x21 − (x1x2 − 1)2

)2
+
[(
f(−x21 − (x1x2 − 1)2 + 1)− 1

2

)2 − 1
4

]2
+
[
f(x21 + 2)− 2f(x21) + f(x21 − 2)

]2
+
[(
f(x21)− f(x21 − 2)

)2 − 1
]2

+
[(
f(x21) + f(x21 + 1)− 1

2

)2 − 1
4

]2
works. Unraveling the equation, we obtain the equivalent condition set

• f(s) = 0 for s < 0,

• f(s) ∈ {0, 1} for s < 1,

• f(s+ 2)− 2f(s) + f(s− 2) = 0 for s ≥ 0,

• f(s)− f(s− 2) ∈ {±1} for s ≥ 0,

• f(s) + f(s+ 1) ∈ {0, 1} for s ≥ 0.

This is equivalent to the sequence {f(n+ α)}n∈Z satisfying the hypothesis of the claim
for any 0 ≤ α < 1. This solves the problem.

Remark. It’s interesting how annoying the constraint about not allowing division is. With
division permitted, the much simpler construction

0 =
[
f((1 + x2)−1)− 1

]2
+ [f(y + 1)− f(y)− 1]

2

works nicely: the first term requires that f(t) = 1 for 0 < t ≤ 1 and the second one means
f(t+ 1) = f(t) + 1 for all t, ergo f is the ceiling function.

14
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C1. Let n ≥ 3 be fixed positive integer. Elmo is playing a game with his clone. Initially,
n ≥ 3 points are given on a circle. On a player’s turn, that player must draw a triangle
using three unused points as vertices, without creating any crossing edges. The first
player who cannot move loses. If Elmo’s clone goes first and players alternate turns,
which player wins for each n?

(Milan Haiman)

The first player (Elmo’s clone) always wins. Indeed it obviously wins for n ≤ 5.
For n ≥ 6, the strategy is to start by picking an isosceles triangle whose base cuts off

either 0 or 1 points (according to whether n is odd or even, respectively).

Then do strategy stealing: each time the second player moves, the first player copies it.

15
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C2. Adithya and Bill are playing a game on a connected graph with n > 2 vertices and
m edges. First, Adithya labels two of the vertices A and B, so that A and B are distinct
and non-adjacent, and announces his choice to Bill. Then Adithya starts on vertex A
and Bill starts on B.

Now the game proceeds in a series of rounds in which both players move simultaneously.
In each round, Bill must move to an adjacent vertex, while Adithya may either move to
an adjacent vertex or stay at his current vertex. Adithya loses if he is ever on the same
vertex as Bill, and wins if he reaches B alone. Adithya cannot see where Bill is, but Bill
can see where Adithya is.

Given that Adithya has a winning strategy, what is the maximum possible value of m,
in terms of n?

(Steven Liu)

The answer is m =
(
n−1
2

)
+ 1. Here is the solution by Milan Haiman.

Construction: suppose G consists of an (n− 1)-clique, two of the vertices which are
labeled C and A, with one extra leaf attached to C, which we label B. Then, Adithya
wins by starting at A and following the sequence A→ A→ C → B.

Bound: The main lemma is the following.

Claim — If B is part of any triangle, then Adithya can’t guarantee victory.

Proof. Bill can move among those three vertices and arrive back at B after k moves, for
any k ≥ 2. Moreover Adithya takes at least two moves to reach B.

So if Adithya is to win, we must have

m ≤
((

n− 1

2

)
−
(
d

2

))
+ d

where d is the degree of B, and this implies the result.

16
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C3. In the game of Ring Mafia, there are 2019 counters arranged in a circle, 673 of
these which are mafia, and the remaining 1346 which are town. Two players, Tony and
Madeline, take turns with Tony going first. Tony does not know which counters are mafia
but Madeline does.

On Tony’s turn, he selects any subset of the counters (possibly the empty set) and
removes all counters in that set. On Madeline’s turn, she selects a town counter which
is adjacent to a mafia counter and removes it. (Whenever counters are removed, the
remaining counters are brought closer together without changing their order so that they
still form a circle.) The game ends when either all mafia counters have been removed, or
all town counters have been removed.

Is there a strategy for Tony that guarantees, no matter where the mafia counters are
placed and what Madeline does, that at least one town counter remains at the end of the
game?

(Andrew Gu)

The answer is no. The following solution is due to Carl Schildkraut.
In fact, suppose we group the counters into 2019 blocks initially into 673 consecutive

groups of 3 and it is declared publicly that there is exactly one Mafia token in each block.

T

M

T

M

T
T T M

T

M

T

T

T

M

T

T

M
TTT

M

M

T

T

Claim — At every step of the game, in every block with at least one token remaining,
any token in that block could be Mafia. In other words, Tony cannot gain any
information about any of the counters in a given block.

Proof. This is clearly true after any of Tony’s moves, since within each block Tony has
no information.

So we just have to verify it for Madeline. If the game is still ongoing, then there is
some block with at least two tokens remaining. So:

• If there are only two tokens left, then they play symmetric roles; Madeline removes
either one.

• If all three tokens remain, then since either the leftmost or rightmost counter could
be Mafia, Madeline simply removes the middle counter.

17
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This completes the proof.

Therefore, it is impossible for Tony to guarantee that at least one town counter remains
and no Mafia tokens remain, since any nonempty block could contain a Mafia token.

18
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C4. Let n ≥ 3 be a positive integer. In a game, n players sit in a circle in that order.
Initially, a deck of 3n cards labeled {1, . . . , 3n} is shuffled and distributed among the
players so that every player holds 3 cards in their hand. Then, every hour, each player
simultaneously gives the smallest card in their hand to their left neighbor, and the largest
card in their hand to their right neighbor. (Thus after each exchange, each player still
has exactly 3 cards.)

Prove that each player’s hand after the first n − 1 exchanges is their same as their
hand after the first 2n− 1 exchanges.

(Carl Schildkraut and Colin Tang)

For now, we focus only on the behavior of the cards in {1, . . . , n} and instead consider
a modified game in which each player

• keeps their minimum card,

• passes their median card one right,

• passes their maximum card two right.

This is the same game up to rotating the names of players.

Claim (Trail of tokens) — For each 1 ≤ r ≤ n, the card r stops moving after at
most r − 1 moves.

Proof. The trick is to treat the cards {1, . . . , r} as indistinguishable: we call such cards
blue tokens. We show all tokens stop moving after at most r − 1 time. The main trick is
the following:

Whenever a player receives a token for the first time, (possibly before any
moves, possibly more than one at once), we have them choose one of their
tokens to turn grey, and have it never move afterwards.

Assume some token is still blue after h hours. If it moved from player 0 to player d,
say (players numbered in order), then players 0, 1, . . . , d, each have a grey token. Thus
d + 1 ≤ r − 1, but the token advanced at least one player per hour, hence d ≥ h, so
h ≤ r − 2.

In other words, by time r − 1 all tokens are grey.

Remark. A similar proof shows that the card r travels a total distance at most r − 1 too,
by doing the same proof but without changing colors of tokens: if a token covers a total
distance d, then players 0, 1, . . . , d− 1 all have a token.

The condition that a player holds at most three tokens at once is not used at any point.

Back to main problem: Return to the original exchange rules. By the main claim,
after n− 1 hours all the cards {1, . . . , n} are always passed left; in particular, they are
in different hands, rotating. A similar claim holds for the large cards {2n+ 1, . . . , 3n}.
Thus the cards {n+ 1, . . . , 2n} are standing still. This implies the problem.

Remark. Despite how tempting it is to apply induction on r to try and prove the main
claim, it seems that using indistinguishable tokens makes things much simpler. Part of the
reason is because the same cards can meet twice: suppose some adjacent players have the
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hands
{1, 3, 6} {7, 8, 9} {4, 9001, 9002} {5, 9003, 9004} . . .

Note the cards 8 and 9 meet again just a few hours later.
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C5. Given a permutation of 1, 2, 3, . . . , n, with consecutive elements a, b, c (in that
order), we may perform either of the moves:

• If a is the median of a, b, and c, we may replace a, b, c with b, c, a (in that order).

• If c is the median of a, b, and c, we may replace a, b, c with c, a, b (in that order).

What is the least number of sets in a partition of all n! permutations, such that any two
permutations in the same set are obtainable from each other by a sequence of moves?

(Milan Haiman)

The number of equivalence classes turns out to be

n2 − 3n+ 4 = 2

[(
n− 1

2

)
+ 1

]
.

First we show that at least 2
(
n−1
2

)
+ 2 sets are required.

Define the disorder of a permutation to be the number of pairs (i, j) such that
1 ≤ i < j ≤ n but i occurs after j in the permutation. We will also refer to these pairs as
pairs that are out of order. We will refer to other such pairs with i occurring before j as
in order.

Note that disorder is invariant under moves, as the only pairs whose relative orders
change are the ones involved in the move. We can easily check that the number of pairs
out of order does not change.

Consider the pair (1, n). Notice that a move cannot change the relative order of
this pair, as neither 1 nor n can be the median of three elements of a permutation of
1, 2, 3, . . . , n.

Lemma 1

There exists a permutation of 1, 2, 3, . . . , n with disorder d, if 0 ≤ d ≤
(
n
2

)
.

Proof. Start with the identity permutation 1, 2, 3, . . . , n, which has disorder 0. Now
repeatedly swap two adjacent elements that are in order. We may do this until all
adjacent elements are out of order, which occurs only with the reverse permutation
n, . . . , 3, 2, 1. Notice that each swap increases the disorder by exactly 1, and that this
process takes us from disorder 0 to disorder

(
n
2

)
. Thus disorder d must have been attained

after exactly d moves.

Consider
(
n−1
2

)
+ 1 permutations of 2, 3, 4, . . . , n, with one of each disorder from 0 to(

n−1
2

)
, by Lemma 1. Putting the element 1 at the beginning of each of these permutations

gives
(
n−1
2

)
+ 1 permutations of 1, 2, 3, . . . , n with distinct disorders. Now consider the

reverses of each of these permutations. They will all have the pair (1, n) out of order,
and thus cannot be obtained from the original permutations by moves. Furthermore
they all have distinct disorders, from

(
n
2

)
−
(
n−1
2

)
= n− 1 to

(
n
2

)
− 0 =

(
n
2

)
. Thus these

2
(
n−1
2

)
+ 2 permutations all cannot be obtained from each other by moves. This proves

the lower bound.
Now we show that 2

(
n−1
2

)
+ 2 sets are attainable. We will categorize permutations

into sets by their disorder and whether the pair (1, n) is in order or not. Note that if
(1, n) is in order we must have a disorder of at most

(
n−1
2

)
, since at most one of the pairs
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(1, k) and (k, n) can be out of order for each 1 < k < n. Similarly if (1, n) is out of order
we must have a disorder of at least n − 1. Thus we are using only 2

(
n−1
2

)
+ 2 sets. It

remains to show that any two permutations in the same set are obtainable from each
other by a sequence of moves.

Lemma 2

Given a permutation of 1, 2, 3, . . . , n we can perform a sequence of moves to obtain
a permutation with n either at the beginning or the end.

Proof. If n is at the beginning or end of the permutation we are done. Otherwise suppose
that k and l are the two elements adjacent to n, in some order. Without loss of generality,
k < l < n. Then l is the median of the three elements k, l, and n. So we may perform a
move on these three elements (as n, not l, is the middle term).

We will repeat this process. As we do so, consider the ordered pair (x, y), where x
is the minimum of the elements adjacent to n, and y is the number of elements on the
other side of n from x. Note that if y ever reaches 0 then we are done.

We claim that this ordered pair is lexicographically monotonically decreasing. Suppose
that this ordered pair is (x0, y0) before a move (as described above) and (x1, y1) after.
Notice that the move will keep x0 adjacent to n. Thus if x1 6= x0 then x1 = min(x0, x1) <
x0. Now if x1 = x0 then one number has moved from the other side of n from x to the
same side of n as x. In this case y1 = y0 − 1 < y0. This proves our claim. Now note that,
by the claim, we must eventually obtain an ordered pair (x, y) with y = 0, as desired.

Now we will show by induction on n that given two permutations σ and π of 1, 2, 3, . . . , n
with the same disorder and with (1, n) in the same relative order, σ and π are obtainable
from each other by a sequence of moves.

It is easy to check values of n ≤ 4.
WLOG assume that both σ and π have (1, n) in order. By Lemma 2 we can perform

a sequence of moves to obtain n at the end of both permutations (it cannot be at the
beginning since that would put (1, n) out of order). Now no pairs with n are out of order
in either permutation. Thus looking at only the first n− 1 terms of the permutations
we see that they still have the same disorder. Then if the pair (1, n− 1) has the same
relative order in both permutations we are done by induction.

Now suppose (1, n− 1) does not have the same relative order in both permutations.
Consider the disorder d of both permutations. On one hand, since we have (1, n− 1) in
order d ≤

(
n−1
2

)
− (n− 1). Similarly, since we have (1, n− 1) out of order, d ≥ n− 1.

Note that we can choose a permutation of 1, 2, 3, . . . , n− 1 with the last three terms
being x, 1, n− 1 and having disorder d, such that x 6= n− 2. Similarly, we can choose a
permutation with the last two terms being n− 1, 1 and having disorder d. By induction,
we can perform a sequence of moves on the first n− 1 terms (leaving n in place) of σ
and π to obtain two permutations of the form . . . , x, 1, n− 1, n and . . . , n− 1, 1, n. It is
sufficient to show that we can also perform a sequence of moves to obtain the latter from
the former. We perform the following moves:

. . . , x, 1, n− 1, n→ . . . , 1, n− 1, x, n→ . . . , 1, x, n, n− 1

Now by Lemma 2 on the first n − 2 terms we may perform a sequence of moves to
move 1 to the beginning or to the end of the first n− 2 terms. Since x 6= n− 2, 1 must
be at the end of the first n − 2 terms, otherwise the relative order of (1, n − 2) would
change. Thus we now have a permutation of the form . . . , 1, n, n − 1 from which we
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obtain a permutation of the form . . . , n − 1, 1, n. Then applying induction again we
obtain specifically the desired permutation of the form . . . , n− 1, 1, n.

Remark. We can also prove Lemma 2 quite easily with induction. However the proof given
more explicitly shows the actual moves we make. That is, we “attach” n to a “small” element
and slide it around with that element until it hits an even “smaller” element repeatedly.

Remark. Result is known: https://arxiv.org/pdf/0706.2996.pdf.
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G1. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. Let BH
intersect AC at E, and let CH intersect AB at F . Let AH intersect Γ again at P 6= A.
Let PE intersect Γ again at Q 6= P . Prove that BQ bisects segment EF .

(Luke Robitaille)

Here are four solutions (unedited).

First solution (Maxwell Jiang) Let R be the midpoint of AH. As HR ·HP = HB ·
HE = 1

2Pow(H) we have B,R,E, P cyclic. Now since ∠ABQ = ∠RPE = ∠RBE we
have R,Q isogonal wrt ∠ABE. But AFHE is cyclic, and so since BR is a median of
4BAH we have BQ is a median of similar 4BEF , as desired.

Second solution (Milan Haiman) Let X be the midpoint of EF and let Y be the
midpoint of AH. Since (AEHF ), 4ABH ∼ 4EBF .

Since BY and BX are medians, by this similarity we have ∠Y BH = ∠FBX.
Let AH intersect BC at D. Note that HY · HP = HA · HD = HE · HB since

(AEDB). Thus (Y EPB).
Now we have ∠ABX = ∠FBX = ∠Y BH = ∠Y BE = ∠Y PE = ∠APE.
Thus BX and PE intersect on Γ at Q.

Third solution (Carl Schildkraut) Let K be the point so that (AK;BC) = −1. It is
well known that KP and EF intersect at some point R on BC. Now, apply Pascal’s
theorem on the cyclic hexagon (KPQBCA). We see KP ∩ BC = R, PQ ∩ AC = E,
so BQ ∩ AK lies on EF . However, as EF and BC are anti-parallel in ∠BAC, the A-
symmedian in ∆ABC is the A-median of ∆AEF , and as such AK ∩EF is the midpoint
of EF , which BQ thus passes through.

Fourth solution (Ankan Bhattacharya) Let M be the midpoint of EF . Use complex
numbers with Γ unit circle; it’s easy to obtain e = 1

2(a + b + c − ac
b ), p = − bc

a , m =
1
2(a+ b+ c)− 1

4a( bc + c
b).

To show that lines BM and PE meet on Γ, it suffices to prove

](BM,PE) = ]BAH ⇐⇒ p−e
b−m ÷

h−a
b−a ∈ R.

Computing the left fraction, we obtain

p− e
b−m

=
− bc

a −
1
2(a+ b+ c− ac

b )

b− 1
2(a+ b+ c) + 1

4a( bc + c
b)

=
−4b2c2 − 2(abc(a+ b+ c)− a2c2)

4ab2c− 2abc(a+ b+ c) + a2(b2 + c2)

= −2 · abc(a+ b+ c) + 2b2c2 − a2c2

−2a2bc+ 2ab2c− 2abc2 + a2(b2 + c2)

= −2 · c(a+ b)(ab− ac+ 2bc)

a(b− c)(ab− ac+ 2bc)

= −2 · c(a+ b)

a(b− c)
.
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Thus

−1

2
· p− e
b−m

÷ h− a
b− a

=
c(a+ b)(b− a)

a(b− c)(b+ c)

and its conjugate equals
1
c
a+b
ab

a−b
ab

1
a
c−b
bc

b+c
bc

which is clearly the same.
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G2. Snorlax is given three pairwise non-parallel lines `1, `2, `3 and a circle ω in the
plane. In addition to a normal straightedge, Snorlax has a special straightedge which
takes a line ` and a point P and constructs a new line `′ passing through P parallel to `.
Determine if it is always possible for Snorlax to construct a triangle XY Z such that the
sides of 4XY Z are parallel to `1, `2, `3 in some order, and X,Y, Z each lie on ω.

(Vincent Huang)

The answer is yes. Here are two solutions.

First solution (Maxwell Jiang) We proceed in three steps.

Claim — Snorlax can construct the center of ω.

Proof. Draw a chord and then two more parallel chords; intersecting diagonals of isosceles
trapezoids gives us a line passing through the center, and repeating this gives us the
center.

Remark (Zack Chroman). The Poncelet-Steiner theorem states that using a single circle
with marked center and straightedge alone, one can do any usual straightedge-compass
construction. Thus quoting this theorem would complete the problem.

Claim — We can construct the midpoint of any segment s.

Proof. All you have to do is construct a parallelogram!

Claim — We can construct the perpendicular bisector of any segment s.

Proof. By above, we can construct the midpoint M of s. We can also construct a chord
s′ of ω parallel to s, and its midpoint M ′. Then draw line M ′O, and finally the line
through M parallel to it.

Suppose lines `1, `2, `3 determine a triangle X ′Y ′Z ′ with circumcenter O′ (which we
can construct by the previous claim), while O is the center of ω (which we can construct
by the first claim). We can draw radii of ω parallel to X ′O′, Y ′O′, Z ′O′ and finish.

Second solution, unedited (Vincent Huang) Pick an arbitrary point A ∈ ω. Draw
B,C,D ∈ ω so that BA ‖ l1, CB ‖ l2, DC ‖ l3.

Claim: The midpoint M of arc AD is fixed regardless of the choice of A.
Proof: Suppose we had some different starting point A′, with corresponding B′, C ′, D′.

If A′ is an arc measure θ clockwise of A, then B′ is an arc measure θ counterclockwise of
B, so C ′ is θ clockwise of C, so D′ is θ counterclockwise of D. Thus it follows that arcs
A′A,D′D have equal measure and are in opposite directions, so the midpoints of arcs
AD,A′D′ are the same.

Then if we choose X,Y, Z so that XY ‖ l1, Y Z ‖ l2, ZX ‖ l3, it follows from the above
letting A = X that the midpoint of arc XX should also be M , i.e. M = X. So it suffices
to construct the midpoint M of arc AD, as it is a choice for a vertex of 4XY Z.

To do this we note for any A′, D′ that ADD′A′ is an isosceles trapezoid, so if E =
AA′ ∩ DD′, F = AD′ ∩ A′D then EF is the perpendicular bisector of AD,A′D′, so
intersecting EF with ω yields M as desired.
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Third solution using projective geometry, unedited (Zack Chroman) The answer is
yes. Work in RP2. We have a straightedge, a marked circle and the line at infinity. We
will use the following theorem, known as the Circumcevian Ping-Pong Theorem. I can’t
find the reference for it, but it’s real! Promise.

Theorem

Let ω be a circle, and let P,Q,R lie on a fixed line. Then there exists a fixed S on
the same line such that, for any A on the circle, if

B = AP ∩ ω,C = QB ∩ ω,D = RC ∩ ω,

then A,D, S are collinear. Another way to phrase this is that a combination of any
even number of ”second-intersection maps” on a circle, all of which come from points
on a fixed line, is the identity iff it’s the identity at one point.

Proof. Let the line intersect the circle at I, J (if the line doesn’t intersect the circle, work
in CP2; it’s clear that this theorem holds there iff it holds in RP2). Then define S so that,
for a fixed choice A0, B0, C0, D0, S lies on A0D0. Then the combination of the projection
maps through P,Q,R, S fix A0, but also fix I, J . Moreover, they define a projective map
on ω, which is therefore the identity.

One can also prove this similarly with the Desargues Involution Theorem, which directly
gives an involution on line PQR that swaps P,R, I, J , and Q,S0; so S0 is fixed.

Now note that we have three points P1, P2, P3 lying on the line at infinity and also
l1, l2, l3, respectively. Then by the theorem there exists a fourth point P4 such that, for
any X on the circle, projecting through P1, P2, P3, P4 in this order gives X again.

Then take a fixed A0 on the circle, and define B0, C0, D0 as these projections, so that
A0, D0, P4 are collinear. A0 = X will work if and only if A0 = D0. It follows that we
want a point A0 such that A0P4 is tangent to ω. We can construct this, but it’s a little
annoying. Our goal will be to construct the perpendicular bisector of A0D0; intersecting
this with the circle will give an A1 whose tangent passes through P4, at which point we
can take A1 = X and be done.

To do this, take an arbitrary point W in the plane, and E ∈ A0W . Then let F ∈ D0W
with EF ‖ A0D0. Quadrilateral A0EFD0 is a trapezoid, so if G = A0F ∩D0E, it follows
that GW passes through the midpoint of A0D0. Now we can do the same process, but
replacing A0D0 with another chord parallel to it, to get another midpoint; connecting
these midpoints gives the perpedicular bisector.

Morally, we’re trying here to construct the polar of P4 with respect to ω, which is
the locus of the midpoints of chords passing through P4. Unfortunately, with only a
straightedge constructing midpoints is as much work as constructing general harmonic
conjugates, so we need to build the Cevalaus construction to do it.
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G3. Let 4ABC be an acute triangle with incenter I and circumcenter O. The incircle
touches sides BC,CA, and AB at D,E, and F respectively, and A′ is the reflection of A
over O. The circumcircles of ABC and A′EF meet at G, and the circumcircles of AMG
and A′EF meet at a point H 6= G, where M is the midpoint of EF . Prove that if GH
and EF meet at T , then DT ⊥ EF .

(Ankit Bisain)

The following harmonic solution is given by Maxwell Jiang.
Define T instead as the foot to EF from D; we wish to show T ∈ GH. Let (AI) meet

(ABC) a second time at a point T ′ so that I, T, T ′ are collinear, say by inversion about the
incircle. By radical axis on (AI), (ABC), (A′EFG) we get a point X = AT ′ ∩EF ∩A′G.
Since ∠XGA = ∠XMA = 90◦, point X lies on (AMG).

Now note that
−1 = (A, I;E,F )

T ′
= (X,T ;E,F ),

so by properties of harmonic divisions we have TM · TX = TE · TF . This implies that
T lies on the radical axis of (AMG) and (A′EFG), as desired.
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G4. Let triangle ABC have altitudes BE and CF which meet at H. The reflection
of A over BC is A′. The circumcircles of 4AA′E and 4AA′F meet the circumcircle of
4ABC at P 6= A and Q 6= A respectively. Lines BC and PQ meet at R. Prove that
EF ‖ HR.

(Daniel Hu)

Solution by Maxwell Jiang (at least for ABC acute):
Let D be the foot from A. Let N be the midpoint of AH, and let X = EF ∩BC. Let

(AH) meet (ABC) again at Y so that A,X, Y collinear and define P ′ = EF ∩NC,Q′ =
EF ∩NB. Finally, let AH hit EF at Z and (ABC) again at H ′.

Note that −1 = (X,D;B,C)
N
= (X,Z;Q′, P ′). Now consider an inversion centered at

A with radius
√
AH ·AD, which swaps N,A′ and P, P ′ and Q,Q′ and X,Y and Z,H ′.

Since inversion preserves cross ratio we get −1 = (Y,H ′;Q,P ), so the tangents to (ABC)
at Y,H ′ meet on PQ. On the other hand, since −1 = (Y,H ′;B,C), these tangents also
meet on BC. Thus the concurrency point is R.

To finish, note that since RH ′ is tangent to (ABC), by reflection about BC we have
RH is tangent to (BHC). Then ]RHB = ]BCH = ]FAH = ]FEH so EF ‖ HR,
as desired.
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G5. Given a triangle ABC for which ∠BAC 6= 90◦, let B1, C1 be variable points on
AB,AC, respectively. Let B2, C2 be the points on line BC such that a spiral similarity
centered at A maps B1C1 to C2B2. Denote the circumcircle of AB1C1 by ω. Show that if
B1B2 and C1C2 concur on ω at a point distinct from B1 and C1, then ω passes through
a fixed point other than A.

(Maxwell Jiang)

The following solutions are not edited.

First solution by quotation (Andrew Gu) Let D = B1B2 ∩ C1C2, E = B1C2 ∩ B2C1.
Then D,E lie on ω. By Miquel, (C1DB2) and (B1DC2) concur on K ∈ BC. ]B2KC1 =
]B2DC1 = ]B1DC1 = ]BAC so ABC1K is cyclic, likewise AB1CK is cyclic. This
reduces it to ELMO SL 2013 G3.

Second solution by projetive geometry (Vincent Huang) Let X = B1B2 ∩C1C2. By
spiral sim, Y = C2B1 ∩B2C1 lies on ω as well. By Brokard on B1Y C1X, the tangents
to ω at B1, C1 meet on BC. Now define Z 6= C1 as BC1 ∩ ω, and let W = AZ ∩B1C1.
By Brokard again, BC is the polar of W , and we get that B1, Z, C collinear.

Now let P be the spiral center sending BC 7→ C1B1, so that P ∈ ω and P ∈ (BZC).
Note that

∠PBC = ∠PC1B1 = ∠PAB, and ∠PCB = ∠PB1C1 = ∠PAC.

Hence (ABP ) and (ACP ) are tangent to BC, and P (the A-HM point) is the desired
fixed point.

Third inversion solution (Maxwell Jiang) Let S = B1C1∩CB. By the spiral similarity,
S lies on both (AB1C2) and (AC1B2).

Now invert about A with arbitrary radius, with X ′ denoting the image of X. So, BC
maps to a circle Ω passing through A, and ω maps to a line `. Note that S′ = Ω∩(AB′1C

′
1).

Hence, S′ is the spiral center sending C ′C ′1 to B′B′1. Then, B2, C2 are the intersections of
S′B′1, S

′C ′1 with Ω. Now, ∠S′B′2B
′ = ∠S′C ′B′ = ∠S′C ′1B

′
1 and similar angle equalities

for ∠S′C ′2C
′ give

C ′C ′2 ‖ B′B′2 ‖ B′1C ′1.

The given condition equates to (AB′2B
′
1) and (AC ′1C

′
2) meeting at a point K on `.

Note that 4AB′2C ′2 ∼ 4AC ′1B′1. Since ∠AB′2K = 180◦ − ∠B′1, we have ∠C ′2B
′
2K =

180◦ − ∠B′1 − ∠C ′1 = ∠B′2AC
′
2, so KB′2 is tangent to Ω. Similarly, KC ′2 is tangent to Ω.
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A

B′
1 C′

1

B′

C′

C′
2

B′
2

K

Since the tangents to Ω at B′2, C
′
2 meet on `, for symmetry reasons the tangents at B′, C ′

also meet on `. However, this point is fixed, so ` passes through a fixed point, as desired.
�

Note: To show that the fixed point is the HM point, instead of taking an inversion
with arbitrary radius, take the one that swaps (AH) and BC. Then use the fact that
the tangents to (AH) at the feet of the altitudes meet at the midpoint of BC, which is
the inverse of the HM point.
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G6. Let ABC be an acute scalene triangle and let P be a point in the plane. For
any point Q 6= A,B,C, define TA to be the unique point such that 4TABP ∼ 4TAQC
and 4TABP,4TAQC are oriented in the same direction (clockwise or counterclockwise).
Similarly define TB, TC .

(a) Find all P such that there exists a point Q with TA, TB, TC all lying on the
circumcircle of 4ABC. Call such a pair (P,Q) a tasty pair with respect to 4ABC.

(b) Keeping the notations from (a), determine if there exists a tasty pair which is also
tasty with respect to 4TATBTC .

(Vincent Huang)

The following solution is by Andrew Gu:
For (a), the answer is all P which have an isogonal conjugate (that is, any point P not

on the circumcircle or sides).
Let (P,Q) be a tasty pair. Then

]BPC = ]BPTA+]TAPC = ]QCTA+]TABQ = ]BTAC+]CQB = ]BAC−]BQC.

Cyclic variants hold, and these imply P and Q are isogonal conjugates.
Conversely, let P and Q be isogonal conjugates. The same steps as above (in a different

order) show that ]BAC = ]BTAC, so TA is on (ABC), and likewise so are TB and TC .
For (b): Let TATBTC be the reflection of ABC about O, the circumcenter. Consider

the inconic with center O. Let P and Q be its foci.
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N1. Let P be a polynomial with integer coefficients so that P (0) = 1. Let x0 = 0, and
let xi+1 = P (xi) for all i ≥ 0. Show that there are infinitely many positive integers n so
that gcd(xn, n+ 2019) = 1.

(Carl Schildkraut and Milan Haiman)

We present a few solutions.

First solution by mod-preservation The “main” case is:

Claim — If there exists an index i for which |xi+1 − xi| > 1 then we are done.

Proof. Let p be any prime dividing the difference and let t = xi, so P (t) ≡ t (mod p).
We have t 6≡ 0 since P (0) ≡ 1 (mod p). Consequently, we get

0 6≡ xi ≡ xi+1 ≡ xi+2 ≡ . . . (mod p)

and in this way we conclude taking n = pe − 2019 for any exponent e large enough is
okay.

So suppose that xi+1 ∈ {xi − 1, xi, xi + 1} for every i. Then either

• The sequence (xn)n is periodic (with period at most 2), so the problem is easy; or

• we have P (x) ≡ 1± x, which is also easy.

Second solution by orbits (by proposer) Let p > 2019 be any prime. We claim that
n = p should work, and in fact that we always have

xp 6≡ 0 (mod q)

for any q | p+ 2019.
To see this, assume for contradiction xp ≡ 0 (mod q). Then (xn mod q)n is periodic,

with period dividing p. But the period should also be at most q, and not equal to 1 as
P (0) = 1. As q < p, this is a contradiction.
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N2. Let f : Z>0 → Z>0 be a function. Prove that the following two conditions are
equivalent:

(i) f(m) + n divides f(n) +m for all positive integers m ≤ n;

(ii) f(m) + n divides f(n) +m for all positive integers m ≥ n.

(Carl Schildkraut)

We show that both are equivalent to f(x) ≡ x+ c for a non-negative integer c. The
following solution is given by Maxwell Jiang.

Part (i): First suppose that f(m) + n | f(n) +m holds for all m ≤ n. This implies
f(m) + n ≤ f(n) +m =⇒ f(m)−m ≤ f(n)− n for all m ≤ n. Define g(n) = f(n)− n
so that g is non-decreasing and the condition becomes

g(m) +m+ n | g(n) +m+ n =⇒ g(m) +m+ n | g(n)− g(m).

Fix m ∈ N and consider

g(m) +m+ n | g(n)− g(m)

g(m+ 1) +m+ 1 + n | g(n)− g(m+ 1)

Let d = g(m+ 1)− g(m) + 1 be the difference between the left sides; note that d > 0.
Pick large n so that d divides both left sides. If d = 1, then g(m) = g(m+ 1). Else, we
get

g(n) ≡ g(m) ≡ g(m+ 1) (mod d)

which is impossible. Hence g(m) = g(m+ 1), which applied to all m gives g constant as
needed.

Part (ii): Now suppose f(m) + n | f(n) + m for all m ≥ n. Fix n = 1 and let
m = p − f(1) for arbitrarily large primes p. Then we force f(p − f(1)) + 1 = p, so in
particular we have infinitely many X such that f(X) = X + c for a constant c ≥ 0.
Fixing m and setting n = X gives

f(m) +X | X + c+m =⇒ f(m) +X | c+m− f(m)

so as X grows big we force f(m) = m+ c, as desired.

Remark. Note that (i) and (ii) together imply that f(x) + y and f(y) +x divide each other,
hence are equal, so f(x) + y = f(y) + x ⇐⇒ f(x) ≡ x+ c. So it is unsurprising that we
are just solving two functional equations.
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N3. Let S be a nonempty set of integers so that, for any (not necessarily distinct)
integers a and b in S, ab+ 1 is also in S. Show that there are finitely many (possibly
zero) primes which do not divide any element of S.

(Carl Schildkraut)

The following solution is due to Ankan Bhattacharya. It’s enough to work modulo p:

Claim — Let p be a prime and let G be a nonempty subset of Fp such that if
a, b ∈ G, then ab+ 1 ∈ G. Then either G is a singleton, or G = Fp.

Proof. If 0 ∈ G then 1 ∈ G and we get G = Fp. So suppose 0 /∈ G, and let G =
{x1, . . . , xn} be its n distinct elements.

If 1 < n < p, then we get a map

G→ G by g 7→ x1g + 1 (mod p)

which is injective (since x1 6= 0), hence bijective. Thus, if we sum, letting s = x1+ · · ·+xn,
we find

s = x1 · s+ n (mod p).

If s ≡ 0, we get n ≡ 0 (mod p), contradiction. Otherwise, we find x1 = 1− n/s (mod p).
But then the same logic shows x2 = n

1−s , so x1 = x2, contradiction.

The problem now follows since if s is any element of S and p is any prime not dividing
s2 − s+ 1, then S contains all residues modulo p.
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N4. A positive integer b ≥ 2 and a sequence a0, a1, a2, . . . of base-b digits 0 ≤ ai < b
is given. It is known that a0 6= 0 and the sequence {ai} is eventually periodic but has
infinitely many nonzero terms. Let S be the set of positive integers n so that the base-b
number (a0a1 . . . an)b is divisible by n. Given that S is infinite, show that there are
infinitely many primes dividing at least one element of S.

(Carl Schildkraut and Holden Mui)

Let gcd(x, y) = 1 so that

x

y
=
∞∑
i=0

ai
bi
.

Note that

(a0 · · · an)b =

⌊
xbn

y

⌋
,

unless {ai} is eventually b− 1; either way, we have

(a0 · · · an)b =
xbn − t
y

for some 0 ≤ t < y. If S is infinite, then there exists some fixed 0 ≤ t < y so that the set
of integers n so that

xbn ≡ t (mod yn)

is infinite. Call this set S′. We see that t 6= 0 (infinitely many nonzero terms condition;
this condition is essential) and x > y > t (from the a0 6= 0 condition).

Our main claim is that for any prime p, the set {νp(n)|n ∈ S′} is bounded above. This
is clear for p|b, wherein the above cannot hold if n > νp(t). Now, assume n = mpk ∈ S′
for some m, k. We have

xbmp
k ≡ t mod pk =⇒ xp−1bmp

k(p−1) ≡ tp−1 mod pk.

As gcd(p, b) = 1, bp
k−1(p−1) ≡ 1 mod pk, so that term disappears, and we thus have

xp−1 ≡ tp−1 mod pk.

As x > t, this cannot hold for large enough k, finishing the proof.
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N5. Let m be a fixed even positive integer. Find all positive integers n for which there
exists a bijection f from {1, . . . , n} to itself such that for all x, y ∈ {1, . . . , n} with mx−y
divisible by n, we also have

(n+ 1) | f(x)m − f(y).

(Milan Haiman and Carl Schildkraut)

Solution by Andrew Gu (unedited):
We are asking for m,n such that the mapping x 7→ mx on Z/nZ and the mapping

x 7→ xm on U = (Z/(n+ 1)Z) \ {0} are isomorphic (behave in the same way by relabeling
elements).

First we claim n+ 1 is a product of distinct primes. Otherwise, there exists x ∈ U for
which xm ≡ 0 (mod n+ 1).

Next note that the mapping x 7→ mx on Z/nZ is a gcd(m,n)-to-1 mapping, so any
element in the range has a preimage of size gcd(m,n). We claim this is impossible for the
second mapping if n+1 = p1 · · · pk is a product of k distinct primes, two of which are odd.
WLOG let p1, p2 be odd. The preimage of the element which is 1 (mod p1), 1 (mod p2),
and 0 modulo all other pi has size gcd(p1 − 1,m) gcd(p2 − 1,m) while the preimage of
the element which is 1 (mod p1) and 0 modulo all other pi has size gcd(p1 − 1,m). As
gcd(pi − 1,m) ≥ 2, these preimages have different sizes.

The remaining cases are n+ 1 = 2p or n+ 1 = p where p is prime. In the case where
n + 1 = 2p, note that p > 2 as we showed that n + 1 is a product of distinct primes.
Then p ∈ U is an mth power of one element (itself) while p+ 1 is an mth power of both
p− 1 and p+ 1. Hence this case fails.

In the case where n+ 1 is prime, let f(x) = gx for a primitive root g. This works, so
for any m, there exists f if and only if n+ 1 is prime.
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ELMO Literally Moved Online
22nd ELMO

127.0.0.1

Year: 2020

Day: 1

Monday, July 20, 2020
2:00PM — 6:30PM EDT

Problem 1. Let N be the set of all positive integers. Find all functions f : N → N such
that∗

ff
f(x)(y)(z) = x+ y + z + 1

for all x, y, z ∈ N.

Problem 2. Define the Fibonacci numbers by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for
n ≥ 3. Let k be a positive integer. Suppose that for every positive integer m there exists a
positive integer n such that m | Fn − k. Must k be a Fibonacci number?

Problem 3. Janabel has a device that, when given two distinct points U and V in the
plane, draws the perpendicular bisector of UV . Show that if three lines forming a triangle
are drawn, Janabel can mark the orthocenter of the triangle using this device, a pencil, and
no other tools.

∗Here, fa(b) denotes the result of a repeated applications of f to b. Formally, we define f1(b) = f(b),
and fa+1(b) = f(fa(b)) for all a > 0.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



ELMO Literally Moved Online
22nd ELMO

127.0.0.1

Year: 2020

Day: 2

Tuesday, July 21, 2020
2:00PM — 6:30PM EDT

Problem 4. Let acute scalene triangle ABC have orthocenter H and altitude AD with
D on side BC. Let M be the midpoint of side BC, and let D′ be the reflection of D over
M . Let P be a point on line D′H such that lines AP and BC are parallel, and let the
circumcircles of 4AHP and 4BHC meet again at G 6= H. Prove that ∠MHG = 90◦.

Problem 5. Let m and n be positive integers. Find the smallest positive integer s for
which there exists an m× n rectangular array of positive integers such that

• each row contains n distinct consecutive integers in some order,

• each column contains m distinct consecutive integers in some order, and

• each entry is less than or equal to s.

Problem 6. For any positive integer n, let

• τ(n) denote the number of positive integer divisors of n,

• σ(n) denote the sum of the positive integer divisors of n, and

• ϕ(n) denote the number of positive integers less than or equal to n that are relatively
prime to n.

Let a, b > 1 be integers. Brandon has a calculator with three buttons that replace the
integer n currently displayed with τ(n), σ(n), or ϕ(n), respectively. Prove that if the
calculator currently displays a, then Brandon can make the calculator display b after a
finite (possibly empty) sequence of button presses.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



Olympians Enjoy Mixed-up
Letters

23rd ELMO
127.0.0.1

Year: 2021

Day: 1

Thursday, June 17, 2021
2:00PM — 6:30PM EDT

Problem 1. In 4ABC, points P and Q lie on sides AB and AC, respectively, such that
the circumcircle of 4APQ is tangent to side BC at D. Let E lie on side BC such that
BD = EC. Line DP intersects the circumcircle of 4CDQ again at X, and line DQ
intersects the circumcircle of 4BDP again at Y . Prove that D, E, X, and Y are concyclic.

Problem 2. Let n > 1 be an integer and let a1, a2, . . . , an be integers such that n | ai − i
for all integers 1 ≤ i ≤ n. Prove there exists an infinite sequence b1, b2, . . . such that

• bk ∈ {a1, a2, . . . , an} for all positive integers k, and

•
∞∑
k=1

bk
nk

is an integer.

Problem 3. Each cell of a 100×100 grid is colored with one of 101 colors. A cell is diverse
if, among the 199 cells in its row or column, every color appears at least once. Determine
the maximum possible number of diverse cells.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



Olympians Enjoy Mixed-up
Letters

23rd ELMO
127.0.0.1

Year: 2021

Day: 2

Friday, June 18, 2021
2:00PM — 6:30PM EDT

Problem 4. The set of positive integers is partitioned into n disjoint infinite arithmetic
progressions S1, S2, . . ., Sn with common differences d1, d2, . . . , dn, respectively. Prove that
there exists exactly one index 1 ≤ i ≤ n such that

1

di

n∏
j=1

dj ∈ Si.

Problem 5. Let n and k be positive integers. Two infinite sequences {si}i≥1 and {ti}i≥1
are equivalent if, for all positive integers i and j, si = sj if and only if ti = tj . A sequence
{ri}i≥1 has equi-period k if r1, r2, . . . and rk+1, rk+2, . . . are equivalent.

Suppose M infinite sequences with equi-period k whose terms are in the set {1, . . . , n}
can be chosen such that no two chosen sequences are equivalent to each other. Determine
the largest possible value of M in terms of n and k.

Problem 6. In 4ABC, points D, E, and F lie on sides BC, CA, and AB, respectively,
such that each of the quadrilaterals AFDE, BDEF , and CEFD has an incircle. Prove
that the inradius of 4ABC is twice the inradius of 4DEF .

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.



Elmo, Let Me Out
24th ELMO

Pittsburgh, PA

Year: 2022

Day: 1

Saturday, June 11, 2022
1:15PM–5:45PM EDT

Problem 1. Let n > 1 be an integer. The numbers 1, . . . , n are written on a board.
Aliceurill and Bobasaur take turns circling an uncircled number on the board, with Aliceurill
going first. When the product of the circled numbers becomes a multiple of n, the game
ends and the last player to have circled a number loses. For which values of n can Bobasaur
guarantee victory?

Problem 2. Find all monic nonconstant polynomials P with integer coefficients for which
there exist positive integers a and m such that for all positive integers n ≡ a (mod m),
P (n) is nonzero, and

2022 · (n+ 1)n+1 − nn

P (n)

is an integer.

Problem 3. Let P be a regular 2022-gon with area 1. Find a real number c such that, if
points A and B are chosen independently and uniformly at random on the perimeter of P,
then the probability that AB ≥ c is 1

2 .

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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Year: 2022
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Problem 4. Let ABCDE be a convex pentagon such that △ABE, △BEC, and △EDB
are similar (with vertices in order). Lines BE and CD intersect at point T . Prove that
line AT is tangent to the circumcircle of △ACD.

Problem 5. Let n ≥ 3 be a positive integer. There are n3 users on a social media
network called Everyone Likes Meeting Online (ELMO), and some pairs of these users are
ELMObuddies. A set of at least three ELMO users forms an ELMOclub if and only if all
pairs of members of the set are ELMObuddies. It is known that among every n users, some
three form an ELMOclub. Prove that there is an ELMOclub with five members.

Problem 6. Find all functions f : Z → Z such that, for all integers m and n,

f(f(m)− n) + f(f(n)−m) = f(m+ n).

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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Problem 1. Let m be a positive integer. Find, in terms of m, all polynomials P (x)
with integer coefficients such that for every integer n, there exists an integer k such that
P (k) = nm.

Problem 2. Let a, b, and n be positive integers. A lemonade stand owns n cups, all
of which are initially empty. The lemonade stand has a filling machine and an emptying
machine, which operate according to the following rules:

• If at any moment, a completely empty cups are available, the filling machine spends
the next a minutes filling those a cups simultaneously and doing nothing else.

• If at any moment, b completely full cups are available, the emptying machine spends
the next b minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying
machine work without pausing. Find, in terms of a and b, the least possible value of n.

Problem 3. Convex quadrilaterals ABCD, A1B1C1D1, and A2B2C2D2 are similar with
vertices in order. Points A, A1, B2, B are collinear in order, points B, B1, C2, C are
collinear in order, points C, C1, D2, D are collinear in order, and points D, D1, A2, A
are collinear in order. Diagonals AC and BD intersect at P , diagonals A1C1 and B1D1

intersect at P1, and diagonals A2C2 and B2D2 intersect at P2. Prove that points P , P1,
and P2 are collinear.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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1:20PM–5:50PM EDT

Problem 4. Let ABC be an acute scalene triangle with orthocenterH. Line BH intersects
AC at E and line CH intersects AB at F . Let X be the foot of the perpendicular from H
to the line through A parallel to EF . Point B1 lies on line XF such that BB1 is parallel
to AC, and point C1 lies on line XE such that CC1 is parallel to AB. Prove that points
B, C, B1, C1 are concyclic.

Problem 5. Find the least positive integer M for which there exist a positive integer n
and polynomials P1(x), P2(x), . . ., Pn(x) with integer coefficients satisfying

Mx = P1(x)
3 + P2(x)

3 + · · ·+ Pn(x)
3.

Problem 6. For a set S of positive integers and a positive integer n, consider the game
of (n, S)-nim, which is as follows. A pile starts with n watermelons. Two players, Deric
and Erek, alternate turns eating watermelons from the pile, with Deric going first. On any
turn, the number of watermelons eaten must be an element of S. The last player to move
wins. Let f(S) denote the set of positive integers n for which Deric has a winning strategy
in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T ), f(f(T )), . . .

be eventually constant?

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
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