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Toomates Coolección 
 

Los libros de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un 

ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser 
digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele 

suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que 

no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales", “licencias de uso” y en general 
cualquier forma de “pago por el acceso a los materiales didácticos”, con las que algunas empresas pretenden cobrar a los 

estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima calidad). Este 

modelo de negocio es miserable, pues impide el compartir un mismo material, incluso entre dos hermanos, pretende convertir a los 
estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende pervertir el 

conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos que se lo 
puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el libro, de 

acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de pago por acceso a los materiales es admitir 
un mundo más injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, 

y esto en un mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder 

compartir el conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 
El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 

materiales didácticos libres, gratuitos y de calidad, que fuerce a las empresas comerciales a competir ofreciendo alternativas de pago 

atractivas aumentando la calidad de los materiales que ofrecen, (que son muy mediocres) y no mediante retorcidas técnicas 
comerciales. 

Estos libros se comparten bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve y 

se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 
procedencia. Todos los libros se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” de 

MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. ¡Libérate de la tiranía y 

mediocridad de los productos comerciales! Crea, utiliza y comparte tus propios materiales didácticos. 

Problem Solving (en español):  

Geometría Axiomática    Problemas de Geometría Vol. 1    Vol. 2    Vol. 3 

Introducción a la Geometría   Álgebra   Teoría de números Vol. 1   Vol. 2    Combinatoria

 Probabilidad Trigonometría    Desigualdades    Números complejos    Calculus & Precalculus  

Libros de texto para ESO y bachillerato (en español y en catalán): 

Cálculo infinitesimal ESP  CAT       Álgebra Lineal ESP  CAT      Geometría Lineal ESP  CAT 

Números Complejos ESP CAT   Combinatoria y probabilidad ESP CAT    Estadística ESP CAT 

Programación Lineal ESP  CAT       Álgebra ESP  CAT      Trigonometria ESP  CAT 

Geometria analítica ESP  CAT      Funciones ESP  CAT     Números (Preálgebra) ESP  CAT   

Proporcionalidad ESP  CAT      Medidas geométricas ESP  CAT      Mates amb Excel 

PAU españolas: 

Cataluña TEC    Cataluña CCSS     Valencia     Galicia     País Vasco     Baleares 

Reválidas internacionales: 

Portugal   Italia   Francia   Rumanía   Hungría   Polonia   Pearson Edexcel International A Level 

China-Gaokao  Corea-Suneung   Pearson Edexcel IGCSE    Cambridge International A Level 

Cambridge IGCSE    AQA GCSE    International Baccalaureate (IB)  

Evaluación diagnóstica y pruebas de acceso: 

 ACM6EP      ACM4      CFGS     PAP 

Competiciones matemáticas: 

Canguro:  España    Cataluña   Francia    USA    Reino Unido    Austria 

USA: Mathcounts AMC 8 10 12 AIME USAJMO USAMO TSTST TST ELMO Putnam HMMT 

España:  OME    OMEFL    OMEEX    OMC    OMEA    OMEM    OMA    CDP 

Europa:  OMI    Arquimede    BMO    Balkan MO    JBMO    OPM 

Internacional:  IMO    IGO    SMT    INMO    CMO    HMMT    EGMO  

AHSME:  Book 1   Book 2   Book 3   Book 4   Book 5   Book 6   Book 7   Book 8   Book 9 

Otros materiales: 

 Pizzazz! Book A  Book B  Book C  Book D  Book E  Pre-Algebra  Algebra , REOIM , Llibre3r 
 
¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones editables “MS Word” de todos los 

materiales para facilitar su edición.  

 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 

¡No utilices una versión anticuada! Todos estos libros se revisan y amplían constantemente. Descarga totalmente gratis la última 

versión de estos documentos en los correspondientes enlaces superiores, en los que siempre encontrarás la versión más actualizada. 
Consulta el catálogo de libros completo en http://www.toomates.net 

¿Problemas para descargar algún documento? Descarga toda la biblioteca Toomates Aquí  

Visita mi Canal de Youtube: https://www.youtube.com/c/GerardRomo  

Visita mi blog: https://toomatesbloc.blogspot.com/ 
Versión de este documento: 17/11/2025  
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The 2020 Canadian Junior Mathematical Olympiad

A competition of the Canadian Mathematical Society and
supported by the Actuarial Profession.

A full list of our competition sponsors and partners is available online at
https://cms.math.ca/Competitions/Sponsors/

Official Problem Set

1. Let a1, a2, a3, . . . be a sequence of positive real numbers that satisfies

a1 = 1 and a2n+1 + an+1 = an for every natural number n.

Prove that an ≥ 1
n

for every natural number n.

2. Ziquan makes a drawing in the plane for art class. He starts by placing his pen at the
origin, and draws a series of line segments, such that the nth line segment has length
n. He is not allowed to lift his pen, so that the end of the nth segment is the start of
the (n + 1)th segment. Line segments drawn are allowed to intersect and even overlap
previously drawn segments.

After drawing a finite number of line segments, Ziquan stops and hands in his drawing
to his art teacher. He passes the course if the drawing he hands in is an N by N square,
for some positive integer N , and he fails the course otherwise. Is it possible for Ziquan
to pass the course?

3. Let S be a set of n ≥ 3 positive real numbers. Show that the largest possible number
of distinct integer powers of three that can be written as the sum of three distinct
elements of S is n− 2.

c© 2020 Canadian Mathematical Society p. 1/2
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4. A circle is inscribed in a rhombus ABCD. Points P and Q vary on line segments AB
and AD, respectively, so that PQ is tangent to the circle. Show that for all such line
segments PQ, the area of triangle CPQ is constant.

A B

CD

P

Q

5. A purse contains a finite number of coins, each with distinct positive integer values. Is
it possible that there are exactly 2020 ways to use coins from the purse to make the
value 2020?

Important!
Please do not discuss this problem set online for at least 24 hours.
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Official Solutions

A full list of our competition sponsors and partners is available online at
https://cms.math.ca/Competitions/Sponsors/

1. Let a1, a2, a3, . . . be a sequence of positive real numbers that satisfies

a1 = 1 and a2n+1 + an+1 = an for every natural number n.

Prove that an ≥ 1
n for every natural number n.

Solution: We prove the inequality by induction. To start, observe that the inequality is obvious for
n = 1.

Assume that the inequality an ≥ 1
n holds for a given value of n. Let f be the function f(x) = x2 +x,

so that we have f(an+1) = an. In order to prove that an+1 ≥ 1
n+1 , it suffices to show that f(an+1) ≥

f
(

1
n+1

)
(since f is an increasing function on the positive real numbers). We have

f

(
1

n+ 1

)
=

(
1

n+ 1

)2

+
1

n+ 1

=
n+ 2

(n+ 1)2

=
n2 + 2n

n(n+ 1)2

<
(n+ 1)2

n(n+ 1)2

=
1

n
≤ an = f(an+1) .

Thus we can conclude that an+1 ≥ 1
n+1 .

This completes the induction proof.

�
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2. Ziquan makes a drawing in the plane for art class. He starts by placing his pen at the origin, and
draws a series of line segments, such that the nth line segment has length n. He is not allowed to
lift his pen, so that the end of the nth segment is the start of the (n+ 1)th segment. Line segments
drawn are allowed to intersect and even overlap previously drawn segments.

After drawing a finite number of line segments, Ziquan stops and hands in his drawing to his art
teacher. He passes the course if the drawing he hands in is an N by N square, for some positive
integer N , and he fails the course otherwise. Is it possible for Ziquan to pass the course?

Solution: We will prove that Ziquan can pass the course by drawing a square with side length
N = 54. First, if Ziquan draws a line semgent of length x from point A to B, then he can draw a
segment of length x+ 1 backwards from B to C, landing at the point C which is on the line AB and
one unit right of A.

This has the net effect of drawing a line segment of length 1 with a tail of length x in the opposite
direction. Thus if Ziquan has already drawn the segment AB, the net effect is extending the existing
line segment by 1 unit. We call this a “unit shift”.

Ziquan starts by drawing the first 11 line segments on the x−axis, all going to the right, except the
segment of length 6 which goes to the left. This creates a line segment from A = (0, 0) to B = (54, 0),
as 54 = 1 + 2 + 3 + 4 + 5 − 6 + 7 + 8 + 9 + 10 + 11. Ziquan draws the second side of the square
by drawing vertical segments going up of lengths 12, 13, 14, 15, ending at C = (54, 54). He goes left
by 16, 17, 18, which puts him at (3, 54). Three unit shifts left lands him at D = (0, 54), having just
drawn a segment of length 24. He finishes the square by going down with segments of length 25, 26,
followed by three final unit shifts down. Note that every unit shift done has sufficient tail.

Alternate Solution: Yes, for N = 30: Start in one direction with 1 + 2 + 3, turn right for
4+5+6+7+8, turn right for 9+10+11, turn right for 12+13−14+15−16+17−18+19−20+21−22+23,
turn right for 24.

Other Possible Solutions: For N = 78 (n = 56), N = 120 (with two different number of steps n,
119 and 71), and N = 190 (n = 149).

�
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3. Let S be a set of n ≥ 3 positive real numbers. Show that the largest possible number of distinct
integer powers of three that can be written as the sum of three distinct elements of S is n− 2.

Solution: We will show by induction that for all n ≥ 3, it holds that at most n− 2 powers of three
are sums of three distinct elements of S for any set S of positive real numbers with |S| = n. This is
trivially true when n = 3. Let n ≥ 4 and consider the largest element x ∈ S. The sum of x and any
two other elements of S is strictly between x and 3x. Therefore x can be used as a summand for at
most one power of three. By the induction hypothesis, at most n − 3 powers of three are sums of
three distinct elements of S\{x}. This completes the induction.

Even if it was not asked to prove, we will now show that the optimal answer n−2 is reached. Observe
that the set S = {1, 2, 32 − 3, 33 − 3, . . . , 3n − 3} is such that 32, 33, . . . , 3n can be expressed as sums
of three distinct elements of S. This makes use of the fact that each term of the form 3k − 3 can be
used in exactly one sum of three terms equal to 3k.

�
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4. A circle is inscribed in a rhombus ABCD. Points P and Q vary on line segments AB and AD,
respectively, so that PQ is tangent to the circle. Show that for all such line segments PQ, the area
of triangle CPQ is constant.

A B

CD

P

Q

Solution: Let the circle be tangent to PQ, AB, AD at T , U , and V , respectively. Let p = PT = PU
and q = QT = QV . Let a = AU = AV and b = BU = DV . Then the side length of the rhombus is
a+ b.

A B

CD

P

Q

T

U

V

Let θ = ∠BAD, so ∠ABC = ∠ADC = 180◦ − θ. Then (using the notation [XYZ] for the area of a
triangle of vertices X,Y, Z)

[APQ] =
1

2
·AP ·AQ · sin θ =

1

2
(a− p)(a− q) sin θ,

[BCP ] =
1

2
·BP ·BC · sin(180◦ − θ) =

1

2
(b+ p)(a+ b) sin θ,

[CDQ] =
1

2
·DQ · CD · sin(180◦ − θ) =

1

2
(b+ q)(a+ b) sin θ,

Page 4 c©2020 Canadian Mathematical Society
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so

[CPQ] = [ABCD]− [APQ]− [BCP ]− [CDQ]

= (a+ b)2 sin θ − 1

2
(a− p)(a− q) sin θ − 1

2
(b+ p)(a+ b) sin θ − 1

2
(b+ q)(a+ b) sin θ

=
1

2
(a2 + 2ab− bp− bq − pq) sin θ.

Let O be the center of the circle, and let r be the radius of the circle. Let x = ∠TOP = ∠UOP and
y = ∠TOQ = ∠V OQ. Then tanx = p

r and tan y = q
r .

A B

CD

P

Q

O

T
U

V

Note that ∠UOV = 2x+ 2y, so ∠AOU = x+ y. Also, ∠AOB = 90◦, so ∠OBU = x+ y. Therefore,

tan(x+ y) =
a

r
=
r

b
,

so r2 = ab. But

r

b
= tan(x+ y) =

tanx+ tan y

1− tanx tan y
=

p
r + q

r

1− p
r ·

q
r

=
r(p+ q)

r2 − pq
=
r(p+ q)

ab− pq
.

Hence, ab− pq = bp+ bq, so bp+ bq + pq = ab. Therefore,

[CPQ] =
1

2
(a2 + 2ab− bp− bq − pq) sin θ =

1

2
(a2 + ab) sin θ,

which is constant.

Alternate Solution: Let O be the center of the circle and r its radius. Then [CPQ] = [CDQPB]−
[CDQ] − [CBP ], where [...] denotes area of the polygon with given vertices. Note that [CDQPB]
is half r times the perimeter of CDQPB. Note that the heights of CDQ and CBP are 2r so
[CDQ] = r ·DQ and [CBP ] = r · PB. Using the fact that QT = QV and PU = PT , it now follows
that [CPQ] = [OVDCBU ]− [CDV ]− [CBU ], which is independent of P and Q.

�
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5. A purse contains a finite number of coins, each with distinct positive integer values. Is it possible
that there are exactly 2020 ways to use coins from the purse to make the value 2020?

Solution: It is possible.
Consider a coin purse with coins of values 2, 4, 8, 2014, 2016, 2018, 2020 and every odd number between
503 and 1517. Call such a coin big if its value is between 503 and 1517. Call a coin small if its value
is 2, 4 or 8 and huge if its value is 2014, 2016, 2018 or 2020. Suppose some subset of these coins
contains no huge coins and sums to 2020. If it contains at least four big coins, then its value must
be at least 503 + 505 + 507 + 509 > 2020. Furthermore since all of the small coins are even in
value, if the subset contains exactly one or three big coins, then its value must be odd. Thus the
subset must contain exactly two big coins. The eight possible subsets of the small coins have values
0, 2, 4, 6, 8, 10, 12, 14. Therefore the ways to make the value 2020 using no huge coins correspond to
the pairs of big coins with sums 2006, 2008, 2010, 2012, 2014, 2016, 2018 and 2020. The numbers of
such pairs are 250, 251, 251, 252, 252, 253, 253, 254, respectively. Thus there are exactly 2016 subsets
of this coin purse with value 2020 using no huge coins. There are exactly four ways to make a value of
2020 using huge coins; these are {2020}, {2, 2018}, {4, 2016} and {2, 4, 2014}. Thus there are exactly
2020 ways to make the value 2020.

Alternate construction: Take the coins 1, 2, . . . , 11, 1954, 1955, . . . , 2019. The only way to get 2020
is a non-empty subset of 1, . . . , 11 and a single large coin. There are 2047 non-empty such subsets of
sums between 1 and 66. Thus they each correspond to a unique large coin making 2020, so we have
2047 ways. Thus we only need to remove some large coins, so that we remove exactly 27 small sums.
This can be done, for example, by removing coins 2020−n for n = 1, 5, 6, 7, 8, 9, as these correspond
to 1 + 3 + 4 + 5 + 6 + 8 = 27 partitions into distinct numbers that are at most 11.

�
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Official Problem Set

1. Let C1 and C2 be two concentric circles with C1 inside C2. Let P1 and P2 be two points
on C1 that are not diametrically opposite. Extend the segment P1P2 past P2 until it
meets the circle C2 in Q2. The tangent to C2 at Q2 and the tangent to C1 at P1 meet
in a point X. Draw from X the second tangent to C2 which meets C2 at the point Q1.
Show that P1X bisects angle Q1P1Q2.

2. How many ways are there to permute the first n positive integers such that in the
permutation, for each value of k ≤ n, the first k elements of the permutation have
distinct remainder mod k?

3. Let ABCD be a trapezoid with AB parallel to CD, |AB| > |CD|, and equal edges
|AD| = |BC|. Let I be the center of the circle tangent to lines AB, AC and BD,
where A and I are on opposite sides of BD. Let J be the center of the circle tangent
to lines CD, AC and BD, where D and J are on opposite sides of AC. Prove that
|IC| = |JB|.

4. Let n ≥ 2 be some fixed positive integer and suppose that a1, a2, . . . , an are positive
real numbers satisfying a1 + a2 + · · ·+ an = 2n − 1.

Find the minimum possible value of

a1
1

+
a2

1 + a1
+

a3
1 + a1 + a2

+ · · ·+ an
1 + a1 + a2 + · · ·+ an−1

.
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5. A function f from the positive integers to the positive integers is called Canadian if it
satisfies

gcd
(
f(f(x)), f(x + y)

)
= gcd (x, y)

for all pairs of positive integers x and y.

Find all positive integers m such that f(m) = m for all Canadian functions f .

Important!
Please do not discuss this problem set online for at least 24 hours.
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Note: Each problem starts on a new page.

Problem No. 1.

Let C1 and C2 be two concentric circles with C1 inside C2. Let P1 and P2 be two points on C1 that are not

diametrically opposite. Extend the segment P1P2 past P2 until it meets the circle C2 in Q2. The tangent

to C2 at Q2 and the tangent to C1 at P1 meet in a point X. Draw from X the second tangent to C2 which

meets C2 at the point Q1. Show that P1X bisects angle Q1P1Q2.

Solution. We will show that the angles ∠Q2P1X and ∠Q1P1X are congruent. Note that, if O denotes the

centre of both circles, the points P1, X,Q2 and Q1 lie on the circle of diameter XO since XP1 is tangent

to the circle thus ∠OP1X = π/2, and similar for the other tangents XP2, XQ1, XQ2. On the other hand,

m(∠Q2P1X) is half the measure of the arc XQ2 and m(∠Q1P1X) is half the measure of the arc XQ1, and

these two arcs are equal because |XQ2| = |XQ1|.

A competition of the Canadian Mathematical Society and

supported by the Actuarial Profession.

©2021 Canadian Mathematical Society April 13, 2021
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Problem No. 2.

How many ways are there to permute the first n positive integers such that in the permutation, for each

value of k ≤ n, the first k elements of the permutation have distinct remainder mod k?

Solution. We show by induction that the first k elements of the permutation must be k consecutive

integers from 1, . . . , n. It is trivially true that for k = n all remainders mod n are distinct and we

induct downwards to show that, with the above condition, it is true for all k < n that first k elements

have distinct remainders mod k. Note that in any k consecutive integers, the only two with the same

remainder mod (k− 1) are the smallest and largest integers, so one of these two must be the k-th integer

of the permutation. This completes the induction, and thus at every step taking away the k-th entry of

the permutation, there are 2 choices to eliminate an integer (the largest or the smallest) and obtain a new

permutation where the first k − 1 entries have distinct remainders mod (k − 1), so the answer is 2n−1.

Page 2 ©2021 Canadian Mathematical Society



Canadian Junior Mathematical Olympiad 2021 https://cmo.math.ca/ Official Solutions

Problem No. 3.

Let ABCD be a trapezoid with AB parallel to CD, |AB| > |CD|, and equal edges |AD| = |BC|. Let I

be the center of the circle tangent to lines AB, AC and BD, where A and I are on opposite sides of BD.

Let J be the center of the circle tangent to lines CD, AC and BD, where D and J are on opposite sides

of AC. Prove that |IC| = |JB|.

Solution. Let {P} = AC ∩BD and let ∠APB = 180− 2a. Since ABCD is an isosceles trapezoid, APB

is an isosceles triangle. Therefore ∠PBA = a, which implies that ∠PBI = 90◦ − a/2 since I lies on the

external bisector of ∠PBA. Since I lies on the bisector of ∠CPB, it follows that ∠BPI = a and hence

that IPB is isosceles with |IP | = |PB|. Similarly JPC is isosceles with |JP | = |PC|. So, in the triangles

CPI and BPJ we have PI ≡ PB and PJ ≡ CP . Since I and J both lie on the internal bisector of

∠BPC, it follows that triangles CPI and BPJ are congruent. Therefore |IC| = |JB|.
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Problem No. 4.

Let n ≥ 2 be some fixed positive integer and suppose that a1, a2, . . . , an are positive real numbers satisfying

a1 + a2 + · · ·+ an = 2n − 1.

Find the minimum possible value of

a1
1

+
a2

1 + a1
+

a3
1 + a1 + a2

+ · · ·+ an
1 + a1 + a2 + · · ·+ an−1

.

Solution. We claim the the minimum possible value of this expression is n. Observe that by AM-GM, we

have that

a1
1

+
a2

1 + a1
+ · · ·+ an

1 + a1 + a2 + · · ·+ an−1

=
1 + a1

1
+

1 + a1 + a2
1 + a1

+ · · ·+ 1 + a1 + a2 + · · ·+ an
1 + a1 + a2 + · · ·+ an−1

− n

≥ n · n

√
1 + a1

1
· 1 + a1 + a2

1 + a1
· · · 1 + a1 + a2 + · · ·+ an

1 + a1 + a2 + · · ·+ an−1
− n

= n · n
√

1 + a1 + a2 + · · ·+ an − n
= 2n− n = n.

Furthermore, equality is achieved when ak = 2k−1 for each 1 ≤ k ≤ n.
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Problem No. 5.

A function f from the positive integers to the positive integers is called Canadian if it satisfies

gcd
(
f(f(x)), f(x+ y)

)
= gcd (x, y)

for all pairs of positive integers x and y.

Find all positive integers m such that f(m) = m for all Canadian functions f .

Solution. Define an m ∈ N to be good if f(m) = m for all such f . It will be shown that m is good if and

only if m has two or more distinct prime divisors. Let P (x, y) denote the assertion

gcd (f(f(x)), f(x+ y)) = gcd (x, y)

for a pair x, y ∈ N. Let x be a positive integer with two or more distinct prime divisors and let pk be

largest power of one of these prime divisors such that pk |x. If x = pk ·q, then pk and q are relatively prime

and x > pk, q > 1. By P (q, x− q),

gcd(f(f(q)), f(x− q + q)) = gcd(f(f(q)), f(x)) = gcd(q, x− q) = q

which implies that q | f(x). By P (pk, x− pk),

gcd(f(f(pk)), f(x− pk + pk)) = gcd(f(f(pk)), f(x)) = gcd(pk, x− pk) = pk

which implies that pk | f(x). Since pk and q are relatively prime, x = pk · q divides f(x), which implies that

f(x) ≥ x. Now assume for contradiction that f(x) > x. Let y = f(x) − x > 0 and note that, by P (x, y),

it follows that

f(f(x)) = gcd(f(f(x)), f(x+ f(x)− x)) = gcd(x, f(x)− x) = gcd(x, f(x)).

Therefore f(f(x)) |x and f(f(x)) | f(x). By P (x, x), it follows that

gcd (f(f(x)), f(2x)) = gcd(x, x) = x.

This implies that x | f(f(x)), which when combined with the above result, yields that f(f(x)) = x. Since

x | f(x) and x is divisible by at least two distinct prime numbers, f(x) is also divisible by at least two

distinct prime numbers. As shown previously, this implies that f(x) | f(f(x)) = x, which is a contradiction

since f(x) > x. Therefore f(x) = x for all positive integers x with two or more distinct prime divisors.

Now it will be shown that all m ∈ N such that either m has one prime divisor or m = 1 are not good.

In either case, let m = pk where k ≥ 0 and p is a prime number and consider the function satisfying

that f(pk) = pk+1, f(pk+1) = pk and f(x) = x for all x 6= pk, pk+1. Note that this function also satisfies

that f(f(x)) = x for all positive integers x. If x + y 6= pk, pk+1, then P (x, y) holds by the Euclidean
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algorithm since f(f((x)) = x and f(x + y) = x + y. If x + y = pk+1, then P (x, y) is equivalent to

gcd (x, pk) = gcd (x, pk+1 − x) = gcd(x, pk+1) for all x < pk+1 which holds since the greatest power of p that

can divide x is pk. If x+ y = pk, then P (x, y) is equivalent to gcd (x, pk+1) = gcd (x, pk − x) = gcd(x, pk)

for all x < pk which holds as shown above. Note that if m = 1 then this case cannot occur. Since this

function satisfies P (x, y), m is good if and only if m has two or more distinct prime divisors.
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P1. Let ABC be an acute angled triangle with circumcircle Γ. The perpendicular from A to BC
intersects Γ at D, and the perpendicular from B to AC intersects Γ at E. Prove that if
|AB| = |DE|, then ∠ACB = 60◦.

P2. You have an infinite stack of T-shaped tetrominoes (composed of four squares of side length 1), and
an n× n board. You are allowed to place some tetrominoes on the board, possibly rotated, as long
as no two tetrominoes overlap and no tetrominoes extend off the board. For which values of n can
you cover the entire board?

Figure 1: T-shaped tetromino

P3. Assume that real numbers a and b satisfy

ab+
√
ab+ 1 +

√
a2 + b ·

√
b2 + a = 0.

Find, with proof, the value of

a
√
b2 + a+ b

√
a2 + b.

P4. Let d(k) denote the number of positive integer divisors of k. For example, d(6) = 4 since 6 has 4
positive divisors, namely, 1, 2, 3, and 6. Prove that for all positive integers n,

d(1) + d(3) + d(5) + · · ·+ d(2n− 1) ≤ d(2) + d(4) + d(6) + · · ·+ d(2n).

© 2022 Canadian Mathematical Society March 10, 2022
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P5. Let n ≥ 2 be an integer. Initially, the number 1 is written n times on a board. Every minute,
Vishal picks two numbers written on the board, say a and b, erases them, and writes either a+ b or
min{a2, b2}. After n− 1 minutes there is one number left on the board. Let the largest possible
value for this final number be f(n). Prove that

2n/3 < f(n) ≤ 3n/3.

Important!
Please do not discuss this problem set online until 24 hours after the CJMO finishes!
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P1. Let ABC be an acute angled triangle with circumcircle Γ. The perpendicular from A to

BC intersects Γ at D, and the perpendicular from B to AC intersects Γ at E. Prove that if

|AB| = |DE|, then ∠ACB = 60◦.

Solution. Since AB and ED are equal chords in the same circle, we either have ∠ACB =

∠ECD or ∠ACB + ∠ECD = 180◦. We compute

AA BB

CC

DD

EE

Figure 1: Illustration for Problem 1.

∠ECD =∠ECA+ ∠ACB + ∠BCD

=∠EBA+ ∠ACB + ∠BAD

=90◦ − ∠BAC + ∠ACB + 90◦ − ∠ABC

=(180◦ − ∠BAC − ∠ABC) + ∠ACB

=2∠ACB.

If ∠ACB = ∠ECD then ∠ACB = 0◦, contradiction. Thus ∠ACB+∠ECD = 180◦, whence

∠ACB = 60◦.
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P2. You have an infinite stack of T-shaped tetrominoes (composed of four squares of side

length 1), and an n × n board. You are allowed to place some tetrominoes on the board,

possibly rotated, as long as no two tetrominoes overlap and no tetrominoes extend off the

board. For which values of n can you cover the entire board?

Figure 2: T-shaped tetromino.

Solution. Let us first note that one can cover the entire board if and only if 4 | n. Indeed,
one can cover a 4× 4 board as follows:

Since for any m ∈ N, 4m × 4m board can be covered by a grid of m2 4 × 4 squares, all

multiples of four are possible.

Suppose then that 4 ∤ n, and assume first that n is odd. Each tetromino covers 4 squares,

hence if one can cover the entire board, then the final area covered must be a multiple of 4.

Since n2 is odd, this is impossible.

Finally, suppose that n = 4k+2 for some k ∈ N∪ {0}. For a contradiction, suppose that

one can cover the entire board. Colour the squares of the board with white and black paint

like a chessboard such that the bottom left corner square is white. Since n is even, there is

the same number of white and black squares. Therefore, there will be n2/2 = 8k2 + 8k + 2

white squares overall, which is an even number. Note that, since white squares do not have

a common border, each T-tetromino covers an odd number of white squares (exactly 1 or 3).

Since we need to place n2/4 = 4k2+4k+1 ≡ 1 (mod 2) tetrominoes, which is an odd number,

we will cover an odd number of white squares. This gives us the desired contradiction with

the observation that we have an even number of white squares, and thus one cannot cover

the board.

Copyright © 2022, Canadian Mathematical Society. All rights reserved. Page 2



P3. Assume that real numbers a and b satisfy

ab+
√
ab+ 1 +

√
a2 + b ·

√
b2 + a = 0.

Find, with proof, the value of

a
√
b2 + a+ b

√
a2 + b.

Solution. Let us rewrite the given equation as follows:

ab+
√
a2 + b

√
b2 + a = −

√
ab+ 1.

Squaring this gives us

a2b2 + 2ab
√
a2 + b

√
b2 + a+ (a2 + b)(b2 + a) = ab+ 1

(a2b2 + a3) + 2ab
√
a2 + b

√
b2 + a+ (a2b2 + b3) = 1(

a
√
b2 + a+ b

√
a2 + b

)2

= 1

a
√
b2 + a+ b

√
a2 + b = ±1.

Next, we show that a
√
b2 + a+ b

√
a2 + b > 0. Note that

ab = −
√
ab+ 1−

√
a2 + b ·

√
b2 + a < 0,

so a and b have opposite signs. Without loss of generality, we may assume a > 0 > b. Then

rewrite

a
√
b2 + a+ b

√
a2 + b = a(

√
b2 + a+ b)− b(a−

√
a2 + b)

and, since
√
b2 + a + b and a −

√
a2 + b are both positive, the expression above is positive.

Therefore,

a
√
b2 + a+ b

√
a2 + b = 1,

and the proof is finished.
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P4. Let d(k) denote the number of positive integer divisors of k. For example, d(6) = 4 since

6 has 4 positive divisors, namely, 1, 2, 3, and 6. Prove that for all positive integers n,

d(1) + d(3) + d(5) + · · ·+ d(2n− 1) ≤ d(2) + d(4) + d(6) + · · ·+ d(2n).

Solution. For any integer k and set of integers S, let fS(k) be the number of multiples of

k in S. We can count the number of pairs (k, s) with k ∈ N dividing s ∈ S in two different

ways, as follows:

• For each s ∈ S, there are d(s) pairs that include s, one for each divisor of s.

• For each k ∈ N, there are fk(S) pairs that include k, one for each multiple of k.

Therefore, ∑
s∈S

d(s) =
∑
k∈N

fS(k).

Let

O = {1, 3, 5, . . . , 2n− 1} and E = {2, 4, 6, . . . , 2n}
be the set of odd and, respectively, the set of even integers between 1 and 2n. It suffices to

show that ∑
k∈N

fO(k) ≤
∑
k∈N

fE(k).

Since the elements of O only have odd divisors,∑
k∈N

fO(k) =
∑
k odd

fO(k).

For any odd k, consider the multiples of k between 1 and 2n. They form a sequence

k, 2k, 3k, . . . ,

⌊
2n

k

⌋
k

alternating between odd and even terms. There are either an equal number of odd and even

terms, or there is one more odd term than even terms. Therefore, we have the inequality

fO(k) ≤ fE(k) + 1

for all odd k. Combining this with the previous observations gives us the desired inequality:∑
k∈N

fO(k) =
∑
k odd

fO(k)

≤
∑
k odd

(fE(k) + 1)

=
∑
k odd

fE(k) + n

=
∑
k odd

fE(k) + fE(2)

≤
∑
k∈N

fE(k).
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P5: Let n ≥ 2 be an integer. Initially, the number 1 is written n times on a board. Every

minute, Vishal picks two numbers written on the board, say a and b, erases them, and writes

either a + b or min{a2, b2}. After n − 1 minutes there is one number left on the board. Let

the largest possible value for this final number be f(n). Prove that

2n/3 < f(n) ≤ 3n/3.

Solution. Clearly f(n) is a strictly increasing function, as we can form f(n− 1) with n− 1

ones, and add the final one. However, we can do better; assume Vishal generates f(n) on the

board. After n− 2 minutes, there are two numbers left, say they were formed by x ones and

y ones, where x + y = n. Clearly the numbers are at most f(x), f(y) (and can be made to

be equal to f(x), f(y)), and therefore we obtain

f(n) = max
x+y=n, 1≤x≤y≤n−1

(
max

(
f(x) + f(y), f(x)2

))
(1)

where we used the fact that f is increasing to get that min(f(x)2, f(y)2) = f(x)2 when x ≤ y.

In particular, f(n+ 1) ≥ f(n) + 1, and f(2n) ≥ f(n)2 for all positive integers n.

Upper bound:

First proof of upper bound. We use induction. We can check that f(n) = n for n ≤ 4, and

these all satisfy the bound f(n) = n ≤ 3n/3. Assume it is true for all m < n (some n ≥ 5),

and with x, y as in equation 1 we have

f(x)2 ≤ f
(⌊n

2

⌋)2

≤
(
3n/6

)2
= 3n/3,

as desired. It thus remains to show that f(x)+ f(y) ≤ 3n/3. By induction, it suffices to prove

that

3x/3 + 3y/3 ≤ 3(x+y)/3,

for 1 ≤ x ≤ y ≤ n− 1 and x+ y = n. This is equivalent to

1 + 3(y−x)/3 ≤ 3y/3.

Let w = 3(y−x)/3, and we require 3x/3w ≥ w + 1. If x ≥ 2, then this is true as w ≥ 1, and if

x = 1 then w = 3(n−2)/3 ≥ 3 and the result is still true. Thus all terms in equation 1 are at

most 3n/3, and so f(n) ≤ 3n/3, and the upper bound is proven.

Second proof of upper bound. Consider a second game with the same rules but in which Vishal

can replace a and b by either a+ b or ab. Let g(n) be the largest possible value for this new

game. Then f(n) ≤ g(n) because min{a2, b2} ≤ ab.
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We can check g(n) = n for n ≤ 4, so g(n) ≤ 3n/3 for these values. If x and y are both

bigger than 1, then g(x) + g(y) ≤ g(x)g(y). Therefore, for n > 4, we have that

g(n) = max

{
g(n− 1) + 1, max

1≤x≤n−1
g(x)g(n− x)

}
Now proceed similarly to the first proof. Assume n > 4 and g(m) ≤ 3m/3 for all m < n. If

1 ≤ x ≤ n− 1, then g(x)g(n− x) ≤ 3x/3 3(n−x)/3 = 3n/3. And g(n− 1) + 1 ≤ 3(n−1)/3 + 1,

which is shown to be less than 3n/3 in the first proof. It follows that f(n) ≤ g(n) ≤ 3n/3.

Lower bound:

First proof of lower bound. We begin with a lemma.

Lemma 1. Let m be a nonnegative integer. Then

f(2m) ≥ 22
m−1

and f(3 · 2m) ≥ 32
m

.

Proof. We prove the lemma by induction. One can check that f(n) = n for n ≤ 3, which

proves the lemma for m = 0. For a general m > 0, we get

f(2m) ≥ f(2m−1)2 ≥
(
22

m−2
)2

= 22
m−1

f(3 · 2m) ≥ f(3 · 2m−1)2 ≥
(
32

m−1
)2

= 32
m

,

by induction, as required.

(This lemma can also be proved more constructively. Briefly, if n = 2m, then partition the 1’s

on the board into 2m−1 pairs, and then add each pair to get 2m−1 2’s (2 = 22
0
); then multiply

pairs of 2’s to get 2m−2 4’s (4 = 22
1
); then multiply pairs of 4’s to get 2m−3 16’s (16 = 22

2
);

and so on, until there are 2 (= 21) copies of 22
m−2

, which then gets replaced with a22
m−1

).

The process is similar for n = 3 · 2m, except that the first step is to partition the 1’s into 2m

groups of 3, and then use addition within each group to get 2m 3’s on the board.)

Now assume 2x ≤ n < 3 · 2x−1 for some integer x. Then we have

f(n) ≥ f(2x) ≥ 22
x−1

> 2n/3,

as required. If no such x exists, then there exists an integer x such that 3 · 2x−1 ≤ n < 2x+1.

In this case, we have

f(n) ≥ f(3 · 2x−1) ≥ 32
x−1

> 22
x+1/3 > 2n/3

where the second last inequality is equivalent to 2x−1 log(3) ≥ 2x+1

3
log(2), and by dividing

out 2x and clearing the denominator this is equivalent to 3 log(3) ≥ 4 log 2, which is true as

33 = 27 > 16 = 24.
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Second proof of lower bound. We shall prove the stronger result f(n) ≥ 2(n+1)/3 for n ≥ 2

by induction. One can check that f(n) = n for n = 2, 3, 4, which proves the result for these

values. Assume that n ≥ 5 and that f(k) ≥ 2(k+1)/3 for all k = 2, 3, . . . , n− 1. Then

f(n) ≥ f (⌊n/2⌋)2

≥
(
2(⌊n/2⌋+1)/3

)2
since

⌊
n
2

⌋
≥ 2

= 2(2⌊n/2⌋+2)/3

≥ 2(n+1)/3 since
⌊
n
2

⌋
≥ n−1

2
.

The result follows by induction.

Remark 1. One can show that f satisfies the recurrence f(n) = n for n = 1, 2, f(2n) = f(n)2

for n ≥ 2, and f(2n + 1) = f(2n) + 1 for n ≥ 1. The upper bound in the problem is tight

(equality holds for n = 3 · 2x), but the lower bound is not.
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Canadian Junior Mathematical Olympiad 2023

A competition of the Canadian Mathematical Society.

Official Problem Set

P1. Let a and b be non-negative integers. Consider a sequence s1, s2, s3, . . . such that s1 = a, s2 = b,
and si+1 = |si − si−1| for i ≥ 2. Prove that there is some i for which si = 0.

P2. An acute triangle is a triangle that has all angles less than 90° (90° is a Right Angle). Let ABC be
a right-angled triangle with ∠ACB = 90◦. Let CD be the altitude from C to AB, and let E be the
intersection of the angle bisector of ∠ACD with AD. Let EF be the altitude from E to BC. Prove
that the circumcircle of BEF passes through the midpoint of CE.

P3. William is thinking of an integer between 1 and 50, inclusive. Victor can choose a positive integer
m and ask William: “does m divide your number?”, to which William must answer truthfully.
Victor continues asking these questions until he determines William’s number. What is the
minimum number of questions that Victor needs to guarantee this?

P4. There are 20 students in a high school class, and each student has exactly three close friends in the
class. Five of the students have bought tickets to an upcoming concert. If any student sees that two
or more of their three close friends have bought tickets, then they will buy a ticket too.

Is it possible that the entire class buys tickets to the concert?

(Assume that friendship is mutual; if student A is close friends with student B, then B is close
friends with A.)

P5. Let ABC be an acute triangle with altitudes AD, BE, and CF meeting at H. The circle passing
through points D, E, and F meets AD, BE, and CF again at X, Y , and Z respectively. Prove the
following inequality:

AH

DX
+

BH

EY
+

CH

FZ
≥ 3.
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Official Solutions for CMO 2023

P1. Let a and b be non-negative integers. Consider a sequence s1, s2, s3, . . . such that s1 = a,

s2 = b, and si+1 = |si − si−1| for i ≥ 2. Prove that there is some i for which si = 0.

Solution 1. First, note that for any positive integers x, y, we have

|x− y| = max(x, y)−min(x, y) ≤ max(x, y)− 1 < max(x, y).

Clearly, the sequence (si)i≥1 consists of non-negative integers. For a contradiction, suppose

that si ≥ 1 for all i ≥ 1. Then, for any positive integer k,

s2(k+1)−1 = s2k+1 = |s2k − s2k−1| < max(s2k−1, s2k)

s2(k+1) = s2k+2 = |s2k+1 − s2k| < max(s2k, s2k+1)

≤ max(s2k,max(s2k−1, s2k)) = max(s2k−1, s2k).

Hence, if bk = max(s2k−1, s2k), then

bk+1 = max(s(2(k+1)−1, s2(k+1)) < max(s2k−1, s2k) = bk,

so (bk)k≥1 is a decreasing sequence. But it means that bk = 0 for some k which gives us the

desired contradiction.

Solution 2. For non-negative integers x, y, we have |x− y| ≤ max(x, y). Therefore

max(si+1, si+2) = max(si+1, |si − si+1|) ≤ max(si, si+1).

Thus the sequence (max(si, si+1)) is non-increasing. Since it is bounded below by 0, it is

eventually constant, that is, there exist C and N such that max(si, si+1) = C for all i ≥ N .

We can assume that sN = C (if not, replace N by N + 1). If sN+1 = C, then sN+2 =

|C−C| = 0, as desired. If sN+1 = 0, then we are clearly done. Finally, if 0 < sN+1 < C, then

sN+2 = C − sN+1 < C, so max(sN+1, sN+2) < C, which gives us the desired contradiction.

Copyright © 2023, Canadian Mathematical Society. All rights reserved. Page 1



P2. An acute triangle is a triangle that has all angles less than 90◦ (90◦ is a Right Angle).

Let ABC be a right-angled triangle with ∠ACB = 90◦. Let CD be the altitude from C to

AB, and let E be the intersection of the angle bisector of ∠ACD with AD. Let EF be the

altitude from E to BC. Prove that the circumcircle of BEF passes through the midpoint of

CE.

Solution. We provide two solutions.

Solution 1:

Let ∠CBA = x. Then ∠ACD = 90◦ − ∠CAD = x, so ∠ACE = x/2.

Therefore ∠BCE = 90◦ − x/2, and

∠CEB = 180◦ − ∠BCE − ∠CBE = 180◦ − (90◦ − x/2)− x = 90◦ − x/2 = ∠BCE,

whence |BC| = |BE|.
Let the midpoint of EC be M , and as |BE| = |BC|, we have ∠BME = 90◦.

Since ∠BFE = 90◦, this implies that BFME is cyclic, which proves the problem.

Solution 2:

Let |AB| = c, |BC| = a, and |CA| = b. Since ABC and CBD are similar (right-angled)

triangles, we have
|CD|
b

=
|DB|
a

=
a

c
,

hence |CD| = ab/c and |DB| = a2/c. Thus |AD| = c − |DB| = b2/c. As |CE| is the angle

bisector, let x = |ED|, and then

x

b2/c− x
=

|DE|
|EA|

=
|CD|
|CA|

=
ab/c

b
=

a

c
.
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This gives x = ab2/c2 − (a/c)x, so

x =
ab2

c(a+ c)
=

a(c2 − a2)

c(a+ c)
=

a(c− a)

c
.

Therefore

|BE| = |BD|+ |DE| = a(c− a)

c
+

a2

c
=

ac

c
= a = |BC|.

Let the midpoint of EC be M , and as |BE| = |BC|, we have ∠BME = 90◦.

Since ∠BFE = 90◦, this implies that BFME is cyclic, which proves the problem.

Copyright © 2023, Canadian Mathematical Society. All rights reserved. Page 3



P3.William is thinking of an integer between 1 and 50, inclusive. Victor can choose a positive

integer m and ask William: “does m divide your number?”, to which William must answer

truthfully. Victor continues asking these questions until he determines William’s number.

What is the minimum number of questions that Victor needs to guarantee this?

Solution. The minimum number is 15 questions.

First, we show that 14 or fewer questions is not enough to guarantee success. Suppose

Victor asks at most 14 questions, andWilliam responds with “no” to each question unlessm =

1. Note that these responses are consistent with the secret number being 1. But since there

are 15 primes less than 50, some prime p was never chosen as m. That means the responses

are also consistent with the secret number being p. Therefore, Victor cannot determine the

number for sure because 1 and p are both possible options.

Now we show that Victor can always determine the number with 15 questions. Let N be

William’s secret number. First, Victor asks 4 questions, with m = 2, 3, 5, 7. We then case on

William’s responses.

Case 1. William answers “no” to all four questions.

N can only be divisible by primes that are 11 or larger. This means N cannot have

multiple prime factors (otherwise N ≥ 112 > 50), so either N = 1 or N is one of the 11

remaining primes less than 50. Victor can then ask 11 questions with m = 11, 13, 17, . . . , 47,

one for each of the remaining primes, to determine the value of N .

Case 2. William answers “yes” to m = 2, and “no” to m = 3, 5, 7.

There are only 11 possible values of N that match these answers (2, 4, 8, 16, 22, 26, 32,

34, 38, 44, and 46). Victor can use his remaining 11 questions on each of these possibilities.

Case 3. William answers “yes” to m = 3, and “no” to m = 2, 5, 7.

There are 5 possible values of N (3, 9, 27, 33, and 39). Similar to Case 2, Victor can ask

about these 5 numbers to determine the value of N .

Case 4. William answers “yes” to multiple questions, or one “yes” to m = 5 or m = 7.

Let k be the product of all m’s that received a “yes” response. Since N is divisible by

each of these m’s, N must be divisible by k. Since k ≥ 5, there are at most 10 multiples of

k between 1 and 50. Victor can ask about each of these multiples of k with his remaining

questions.
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P4. There are 20 students in a high school class, and each student has exactly three close

friends in the class. Five of the students have bought tickets to an upcoming concert. If any

student sees that at least two of their close friends have bought tickets, then they will buy a

ticket too.

Is it possible that the entire class buys tickets to the concert?

(Assume that friendship is mutual; if student A is close friends with student B, then B

is close friends with A.)

Solution 1. It is impossible for the whole class to buy tickets to the concert.

If two students A and B are close friends, and A has bought a ticket to the concert while

B has not, then A is enticing B. We call this pair (A,B) an enticement.

In order for a student to change their mind and buy a ticket, they first be enticed by

at least 2 of their 3 close friends. That means they can only entice at most 1 other friend.

Therefore, the total number of enticements among the students decreases by 1 whenever a

student changes their mind to buy a ticket.

Initially, the maximum number of enticements is 15 (each of the initial 5 students with

tickets has 3 friends to entice). Assume, for the sake of contradiction, that the entire class

ends up buying tickets. After the first 14 people buy tickets, the number of enticements is at

most 15− 14 = 1. This is not enough to convince the last person to buy a ticket, since they

need 2 enticements.

Therefore, it is impossible that the entire class buys tickets.

Solution 2. We shall use the term friendship to denote an unordered pair of students who

are close friends. Since each of the 20 students is part of exactly 3 friendships, there are exactly

30 friendships in the class. (We could also represent friendships as edges in an undirected

graph whose vertices are the 20 students.)

We say that a friendship is used if one of the students in that friendship buys a ticket

after the original five buyers, and the other student already has a ticket at that time. Each

time a ticket is purchased after the original five purchases, at least two friendships are used.

Observe that no friendship gets used twice.

If all 20 students buy tickets, then three friendships are used when the last student buys a

ticket. This would imply that the number of used friendships is at least 14×2+3 = 31, which

is more than the number of friendships. This contradiction proves that it is not possible that

the entire class buys tickets.
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P5. An acute triangle is a triangle that has all angles less than 90◦ (90◦ is a Right Angle). Let

ABC be an acute triangle with altitudes AD, BE, and CF meeting at H. The circle passing

through points D, E, and F meets AD, BE, and CF again at X, Y , and Z respectively.

Prove the following inequality:

AH

DX
+

BH

EY
+

CH

FZ
≥ 3.

Solution. Let the circumcircle of ABC meet the altitudes AD, BE, and CF again at I, J ,

and K respectively.

Lemma (9-point circle). I, J , K are the reflections of H across BC, CA, AB. Moreover,

D, E, F , X, Y , Z are the midpoints of HI, HJ , HK, HA, HB, HC.

Proof. Since ABDE and ABIC are cyclic, we see that

∠EBD = ∠EAD = ∠CAI = ∠CBI.

Hence the lines BI and BH are reflections across BC. Similarly, CH and CI are reflections

across BC, so I is the reflection of H across BC. The analogous claims for J and K follow.

A ×2 dilation from H now establishes the result.
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From this lemma, we get AI = 2XD, BJ = 2EY , and CK = 2FZ. Hence it is equivalent

to showing that
AH

2DX
+

BH

2EY
+

CH

2FZ
≥ 3

2
,

which is in turn equivalent to

AH

AI
+

BH

BJ
+

CH

CK
≥ 3

2
. (*)

Let a = JK, b = KI and c = IJ . Again by the lemma we find AH = AK = AJ , so by

Ptolemy’s theorem on AKIJ ,

AJ ·KI + AK · IJ = AI · JK.

Substituting and rearranging,

AH · b+ AH · c = AI · a
AH · (b+ c) = AI · a

AH

AI
=

a

b+ c
.

Similarly,
BH

BJ
=

b

c+ a
and

CH

CK
=

c

a+ b
.

Plugging these back into (*), the desired inequality is now

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

This is known as Nesbitt’s Inequality, which has many proofs. Below is one such proof.

Add 3 to both sides and rearrange:(
a

b+ c
+ 1

)
+

(
b

c+ a
+ 1

)
+

(
c

a+ b
+ 1

)
≥ 3

2
+ 3

⇐⇒ a+ b+ c

b+ c
+

a+ b+ c

c+ a
+

a+ b+ c

a+ b
≥ 9

2

⇐⇒ (a+ b+ c)

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
≥ 9

2

⇐⇒ (b+ c) + (c+ a) + (a+ b)

3
≥ 3

1
b+c

+ 1
c+a

+ 1
a+b

which is true by the AM-HM inequality.
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Canadian Junior Mathematical Olympiad

Official 2024 Problem Set

J1. Centuries ago, the pirate Captain Blackboard buried a vast amount of treasure in a
single cell of a 2× 4 grid-structured island. You and your crew have reached the island
and have brought special treasure detectors to find the cell with the treasure. For each
detector, you can set it up to scan a specific subgrid [a, b]× [c, d] with 1 ≤ a ≤ b ≤ 2
and 1 ≤ c ≤ d ≤ 4. Running the detector will tell you whether the treasure is in the
region or not, though it cannot say where in the region the treasure was detected. You
plan on setting up Q detectors, which may only be run simultaneously after all Q
detectors are ready. What is the minimum Q required to guarantee your crew can
determine the location of Blackboard’s legendary treasure?

J2. Let n be a positive integer. Let

In =
n∑

i=1

n∑
j=1

n∑
k=1

min

(
1

i
,
1

j
,
1

k

)

and Hn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
. Determine In −Hn in terms of n.

J3. Let ABC be a triangle with incenter I. Suppose the reflection of AB across CI and
the reflection of AC across BI intersect at a point X. Prove that XI is perpendicular
to BC.

(The incenter is the point where the three angle bisectors meet.)

J4. Jane writes down 2024 natural numbers around the perimeter of a circle. She wants the
2024 products of adjacent pairs of numbers to be exactly the set {1!, 2!, . . . , 2024!}.
Can she accomplish this?

J5. Let N be the number of positive integers with 10 digits d9d8 · · · d1d0 in base 10 (where
0 ≤ di ≤ 9 for all i and d9 > 0) such that the polynomial

d9x
9 + d8x

8 + · · ·+ d1x+ d0

is irreducible in Q. Prove that N is even.

(A polynomial is irreducible in Q if it cannot be factored into two non-constant
polynomials with rational coefficients.)
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Official Solutions for CJMO 2024

J1. Centuries ago, the pirate Captain Blackboard buried a vast amount of treasure in a single

cell of a 2 × 4 grid-structured island. You and your crew have reached the island and have

brought special treasure detectors to find the cell with the treasure. For each detector, you can

set it up to scan a specific subgrid [a, b]×[c, d] with 1 ≤ a ≤ b ≤ 2 and 1 ≤ c ≤ d ≤ 4. Running

the detector will tell you whether the treasure is in the region or not, though it cannot say

where in the region the treasure was detected. You plan on setting up Q detectors, which may

only be run simultaneously after all Q detectors are ready. What is the minimum Q required

to guarantee your crew can determine the location of Blackboard’s legendary treasure?

Solution. We shall prove that Q = 3.

Let us first observe that Q ≤ 3, that is, it is possible to complete the task with three detectors

on the grid having 2 rows and 4 columns, as follows. The first detector scans the four cells

in the first row; a second detector scans all four cells in the first two columns; and the third

detector scans all four cells in the second and third columns. The following diagram shows

which detectors cover each cell:

12 123 1 3 1

2 23 3

Notice that no two cells would give the same response from all three detectors, so these three

detectors suffice to distinguish the eight possible locations. This proves that Q ≤ 3.

To see that Q ≥ 3, observe that there are only 2×2 possible responses from any arrangement

of two detectors. These four possible responses are not enough to distinguish eight possible

locations. Therefore three detectors are needed.
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J2. Let n be a positive integer. Let

In =
n∑

i=1

n∑
j=1

n∑
k=1

min

(
1

i
,
1

j
,
1

k

)

and Hn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
. Determine In −Hn in terms of n.

Solution. Fix a positive integer ℓ with 1 ≤ ℓ ≤ n. Then min
(

1
i
, 1
j
, 1
k

)
= 1

ℓ
precisely when

one of i, j, k = ℓ and the others are at most ℓ. By inclusion-exclusion, the number of (i, j, k)

that achieve this is 3ℓ2 − 3ℓ+ 1. Consequently,

In =
n∑

ℓ=1

(3ℓ2 − 3ℓ+ 1) · 1
ℓ
=

n∑
ℓ=1

3ℓ−
n∑

ℓ=1

3 +
n∑

ℓ=1

1

ℓ
= 3 · n(n+ 1)

2
− 3n+Hn

so

In −Hn =
3n(n+ 1)

2
− 3n =

3n(n− 1)

2
.

Copyright © 2024, Canadian Mathematical Society. All rights reserved. Page 2



J3. Let ABC be a triangle with incenter I. Suppose the reflection of AB across CI and the

reflection of AC across BI intersect at a point X. Prove that XI is perpendicular to BC.

(The incenter is the point where the three angle bisectors meet.)

Solution. Suppose the reflection of AC across BI intersects BC at E. Define F similarly for

the reflection of AB across CI. Also suppose CI intersects AB at M and BI intersects AC

at N . Since CA and CF = BC are reflections across CI, and so are MA and MF = XM ,

we have that A and F are reflections across CI. Similarly A and E are reflections across BI.

Thus ∠XFC = ∠BAC = ∠XEB if ∠BAC is acute (and ∠XFC = ∠XEB = π − ∠BAC,

when ∠BAC is obtuse), so XF = XE. Moreover we also find that IF = IA = IE by the

aforementioned reflection properties, so thus XI is the perpendicular bisector of EF and is

hence perpendicular to BC.
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J4. Jane writes down 2024 natural numbers around the perimeter of a circle. She wants the

2024 products of adjacent pairs of numbers to be exactly the set {1!, 2!, . . . , 2024!}. Can she

accomplish this?

Solution 1. Given any prime p and positive integer x, let vp(x) denote the highest power of

p dividing x. We claim that Jane cannot write 2024 such numbers as that would imply that

1! · 2! · · · 2024! is the square of the product of the 2024 numbers. Let p be a prime and k be

a natural number such that k < p, kp ≤ 2024, and (k + 1)p > 2024. Then note that

vp(1! · 2! · · · 2024!) = (2024− p+ 1) + (2024− 2p+ 1) + . . .+ (2024− kp+ 1).

In particular, let p be in (2024
4
, 2024

2
). By Bertrand’s Postulate, such a prime p exists (and p

must also be odd). Further, the corresponding k is either 2 or 3. Either way, vp(1! ·2! · · · 2024!)
is odd from the above formula, and so 1! · 2! · · · 2024! cannot be a perfect square.

Solution 2. As in the first solution, we prove 1! · 2! · · · 2024! is not a perfect square. To do

this, note that we can rewrite the product as (1!)2 · 2 · (3!)2 · 4 · · · (2023!)2 · 2024 which is

2 · 4 · · · 2024 · (1! · 3! · · · 2023!)2 = 1012! · (21012 · 1! · 3! · · · 2023!)2

so it is sufficient to verify 1012! is not a perfect square. This can be verified by either noticing

the prime 1009 only appears as a factor of 1012! once, or by evaluating v2(1012!) = 1005.

Copyright © 2024, Canadian Mathematical Society. All rights reserved. Page 4



J5. Let N be the number of positive integers with 10 digits d9d8 · · · d1d0 in base 10 (where

0 ≤ di ≤ 9 for all i and d9 > 0) such that the polynomial

d9x
9 + d8x

8 + · · ·+ d1x+ d0

is irreducible in Q. Prove that N is even.

(A polynomial is irreducible in Q if it cannot be factored into two non-constant polynomials

with rational coefficients.)

Solution. Let f(x) = d9x
9 + d8x

8 + · · ·+ d1x+ d0. If d0 = 0, then f(x) is divisible by x and

thus reducible, so we may ignore all such polynomials. The remaining polynomials all have

nonzero leading and constant coefficients.

For any polynomial p(x) of degree n with nonzero leading and constant coefficients, say

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, define p(x) to be the reversed polynomial a0x
n +

a1x
n−1 + · · · + an−1x + an. Observe that p(x) also has degree n and furthermore, p(x) =

xn
(
a0 + a1

(
1
x

)
+ · · ·+ an−1

(
1
x

)n−1
+ an

(
1
x

)n)
= xnp

(
1
x

)
.

Consider pairing each f(x) with f(x) whenever f(x) ̸= f(x). If f(x) is reducible, it can

be factored as f(x) = g(x)h(x) where deg g, deg h ≥ 1. Because the leading and constant

coefficients of f(x) are nonzero, so are the leading and constant coefficients of g(x) and

h(x). Hence g(x) and h(x) are well defined with deg g = deg g ≥ 1 and deg h = deg h ≥ 1.

Furthermore,

f(x) = x9f

(
1

x

)
= x9g

(
1

x

)
h

(
1

x

)
=

(
xdeg gg

(
1

x

))(
xdeg hh

(
1

x

))
= g(x)h(x).

Thus f(x) = g(x)h(x) is a factorization of f(x) into two non-constant polynomials, so f(x)

is also reducible. Therefore f(x) is irreducible if and only if f(x) is irreducible, so considering

each pair, there are an even number of irreducible polynomials with f(x) ̸= f(x).

Finally, note that if f(x) = f(x), then di = d9−i for each i. In such a case, we have f(−1) =

(d0− d9)+ (d2− d7)+ (d4− d5)+ (d6− d3)+ (d8− d1) = 0, so by the Factor Theorem, (x+1)

is a factor of f(x). Therefore these remaining polynomials are all reducible.
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Canadian Junior Mathematical Olympiad

Official 2025 Problem Set

J1. Suppose an infinite non-constant arithmetic progression of integers contains 1 in it.
Prove that there are an infinite number of perfect cubes in this progression.

(A perfect cube is an integer of the form k3, where k is an integer. For example, −8, 0,
and 1 are perfect cubes.)

J2. Let ABCD be a trapezoid with parallel sides AB and CD, where BC ̸= DA. A circle
passing through C and D intersects AC, AD, BC, and BD again at W , X, Y , and Z
respectively. Prove that WZ, XY , and AB are concurrent.

J3. The n players of a hockey team gather to select their team captain. Initially, they
stand in a circle, and each person votes for the person on their left.

The players will update their votes via a series of rounds. In one round, each player a
updates their vote, one at a time, according to the following procedure: At the time of
the update, if a is voting for b, and b is voting for c, then a updates their vote to c.
(Note that a, b, and c need not be distinct; if b = c, then a’s vote does not change for
this update.) Every player updates their vote exactly once in each round, in an order
determined by the players (possibly different across different rounds).

They repeat this updating procedure for n rounds. Prove that at this time, all n
players will unanimously vote for the same person.

J4. Determine all positive integers a, b, c, p where p and p+ 2 are odd primes and

2apb = (p+ 2)c − 1.

J5. A polynomial cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0 with degree d is reflexive if there is an
integer n ≥ d such that ci = cn−i for every 0 ≤ i ≤ n, where ci = 0 for i > d. Let ℓ ≥ 2
be an integer and p(x) be a polynomial with integer coefficients. Prove that there exist
reflexive polynomials q(x), r(x) with integer coefficients such that

(1 + x+ x2 + · · ·+ xℓ−1)p(x) = q(x) + xℓr(x).
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J1. Suppose an infinite non-constant arithmetic progression of integers contains 1 in it.
Prove that there are an infinite number of perfect cubes in this progression.

(A perfect cube is an integer of the form k3, where k is an integer. For example, −8, 0,
and 1 are perfect cubes.)

Solution

Let a and d be the first term and the common difference in the arithmetic progression,
respectively. Clearly, both a and d are integers. Moreover, since the arithmetic
progression is non-constant, d ̸= 0 (but it could be positive or negative!). Note that for
any integer k,

(1 + kd)3 = 1 + 3(kd) + 3(kd)2 + (kd)3

= 1 + d(3k + 3k2d+ k3d2).

Clearly, if d is positive, then there are infinitely many positive integers ℓ such that

ℓ = 3k + 3k2d+ k3d2

for some integer k. For those values of ℓ, 1 + dℓ is in the arithmetic progression and it a
perfect cube, and the proof is finished.

Suppose now that d is negative. Since

3k + 3k2d+ k3d2 = 3k + (k2d)(3 + kd)

and both k2d and 3 + kd are negative and decreasing with k for k ≥ 4, we again get
that there are infinitely many positive integers ℓ satisfying the same equality. The
proof is finished.

J2. Let ABCD be a trapezoid with parallel sides AB and CD, where BC ̸= DA. A circle
passing through C and D intersects AC, AD, BC, and BD again at W , X, Y , and Z
respectively. Prove that WZ, XY , and AB are concurrent. Solution

∠AXY = 180◦ − ∠DXY = ∠Y CD = 180◦ − ∠ABC, so ABYX and similarly ABZW
are both cyclic. Also, by assumption, XY ZW are cyclic.

Note that AB is a radical axis of circles (ABYX), (ABZW ). Similarly, points XY is a
radical axis of (ABYX) and (XY ZW ). Finally, WZ is a radical axis of (ABZW ) and
(XY ZW ). The result follows from the fact that three circles, when taken in pairs, have
concurrent radical axis.
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J3. The n players of a hockey team gather to select their team captain. Initially, they
stand in a circle, and each person votes for the person on their left.

The players will update their votes via a series of rounds. In one round, each player a
updates their vote, one at a time, according to the following procedure: At the time of
the update, if a is voting for b, and b is voting for c, then a updates their vote to c.
(Note that a, b, and c need not be distinct; if b = c, then a’s vote does not change for
this update.) Every player updates their vote exactly once in each round, in an order
determined by the players (possibly different across different rounds).

They repeat this updating procedure for n rounds. Prove that at this time, all n
players will unanimously vote for the same person.

Comment. Unfortunately, the level of difficulty of this problem was the result of an
unintentional clerical error. The version of this problem which had been initially slated
for the contest was much easier. It had stated, “They repeat the same updating
procedure on the second day, the third day, and so on. Prove that eventually, all players
will unanimously vote for the same person.” In other words, there had been no bound of
n rounds.

Solution 1

Initially, all players are in a cycle. Note that once a player leaves the cycle, they cannot
rejoin. Furthermore, a new cycle cannot be created. Hence, at any point in time, the
graph corresponding to the votes will be a functional graph with a single cycle.

We will first prove that after ⌊log2 n⌋ rounds, the cycle will become a self-loop. Then,
we will show that in the next ⌊log2 n⌋ rounds, all other players vote for the player in
the self-loop.

To show the first step, assume the cycle has size K > 1 at the beginning of a round.
Consider arbitrary player a in the cycle who is updating their vote. Say a → b → c, all
in the cycle. Then a → c now, bumping b out of the cycle and reducing its size to
K − 1. Note that b can now update their vote as well without affecting the size of the
cycle. If we consider all K original players in the cycle, we see that at least ⌈K

2
⌉ of

them must still be in the cycle at the time of their update, and hence the cycle’s size is
reduced to at most ⌊K

2
⌋. After ⌊log2 n⌋ rounds, the cycle must be reduced to size 1.

Now that the cycle has been reduced to a single player, say z, consider any path from a
player a to z. No players can be added to this path now. With a similar argument as
the cycle, the length of the path must halve each round. In particular, a path of length
L to the cycle gets reduced to length ⌈L

2
⌉ (note the ceiling, we had the floor for the

cycle). After ⌈log2 n⌉ rounds, the path must be reduced to length 1.

Thus, after ⌊log2 n⌋+ ⌈log2 n⌉ rounds, the graph has been completely reduced. For
n ≥ 5, ⌊log2 n⌋+ ⌈log2 n⌉ ≤ 2⌊log2 n⌋+ 1 ≤ n. For the other n, we can manually check
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that ⌊log2 n⌋+ ⌈log2 n⌉ ≤ n.

Comment 1. In this proof, it is important that we consider the cycle size and path
sizes in disjoint rounds. In the rounds where the cycle size is decreasing, it’s possible
for the path sizes to increase by Cn for some constant C.

Comment 2. This proof can actually be refined to prove that log2 n+O(log2 log2 n)
rounds are sufficient (and constructions show that this is necessary). Consider a fixed
player a and the path from a to the cycle as it changes across the rounds. In round i,
let ℓi be the number of players which were part of the cycle at the beginning of round
i, and became part of this path during round i. (Note that it’s possible that a player
was part of the path for only a portion of round i, and is no longer part of the path at
the end. It should still be counted.) We can see that ℓi is bounded by size of the cycle
at the start of round i, which we know is ≤ n

2i−1 .

Now note that the size of this path after round k is at most

1 +
ℓ1

2k−1
+

ℓ2
2k−2

+ . . .+
ℓk−1

2
+ ℓk ≤ 1 +

kn

2k−1
.

Hence, when k = log2 n+ C log2 log2 n for C sufficiently large, we must have that every
player is voting for the self-loop.

Solution 2

We will use induction on n.

Inductive Hypothesis. Let G be any functional graph with n nodes and a single
cycle. Then after n rounds of the given operation, G will become a self-loop with n− 1
nodes pointing to it.

Base Case. The cases n ≤ 2 are clear.

Inductive Step. Assume that the hypothesis is proved for n = k − 1 and n = k − 2.
We will prove it for n = k. Consider any initial functional graph with k nodes and a
single cycle. Note there is some node a which has in-degree 0 (i.e. no nodes point to it),
or all k nodes are in the cycle.

In the first case, consider G \ {a}. Note that all operations except a’s own updates are
independent of where a is. By the inductive hypothesis, after k − 1 rounds, G \ {a} has
become a single self-loop and k − 2 nodes pointing to it. Regardless of where a is, it
will point to the self-loop after one more round and we are done.

In the case where all k nodes are in a cycle, consider the very first operation
z → a → b =⇒ z → b, a → b. This creates a zero in-degree node a, but z’s operation
has been used for the first round so the inductive hypothesis cannot be naively applied.
Instead, consider b → c (possibly c = z if k = 3). At some point in the first round, b
will be updated. Either c will become another zero in-degree node, or a will be the only
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node that points to c. Either way, consider G \ {a, c}. By the induction hypothesis,
after rounds 2 through k − 1, this graph will become a self-loop with k − 3 nodes
pointing to it. It’s also easy to see that a and c both have in-degree 0 after round 2.
Then in one more round after round k − 1, we must have a and c pointing to the
self-loop. So we are done for n = k.

By induction, we are done for all n.

Comment. If the problem were instead to prove the result after 2n rounds, the
induction would be much easier.
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J4. Determine all positive integers a, b, c, p where p and p+ 2 are odd primes and

2apb = (p+ 2)c − 1.

Solution

The only solution is (a, b, c, p) = (3, 1, 2, 3). First, factor the right hand side. This gives
us

2apb = (p+ 1)((p+ 2)c−1 + (p+ 2)c−2 + · · ·+ (p+ 2) + 1).

Since gcd(p, p+ 1) = 1 it must be the case that p+ 1 = 2x for some positive integer
x ≤ a and so p = 2x − 1 and p+ 2 = 2x + 1. Now for x ≥ 3, 2x + 1 is not prime if x is
odd (since it is 0 mod 3) and 2x − 1 is not prime if x is even (since it is 0 mod 3). This
means x ≤ 2, and the only admissible such x is x = 2 since otherwise p is not prime.
So, the original equation becomes

2a3b = 5c − 1.

Now 3|(5c − 1), so evaluating 5c − 1 mod 3 gives that c = 2d for some positive integer d
and hence

2a3b = (5d − 1)(5d + 1).

Observe 5d − 1 and 5d + 1 are both even and have greatest common divisor 2 because
they are 2 apart. Since 4|(5d − 1) this implies 5d − 1 = 2a−1 and 5d + 1 = 2 · 3b. Now, 3
is not a factor of 5d − 1 because 5d − 1 = 2a−1. Thus, by evaluating mod 3, d must be
odd. If d > 1, this is impossible as 5d − 1 = (5− 1)(5d−1 + 5d−2 + · · ·+ 5 + 1) and the
latter factor has an odd prime factor, contradicting 5d − 1 is a power of 2. Thus d = 1
and so c = 2, implying that 2a3b = 24 so a = 3 and b = 1. Hence, the only solution is
(a, b, c, p) = (3, 1, 2, 3).

© 2025 Canadian Mathematical Society Page 5



Official Solutions https://cjmo.math.ca/2025/ CJMO 2025

J5. A polynomial cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0 with degree d is reflexive if there is an
integer n ≥ d such that ci = cn−i for every 0 ≤ i ≤ n, where ci = 0 for i > d. Let ℓ ≥ 2
be an integer and p(x) be a polynomial with integer coefficients. Prove that there exist
reflexive polynomials q(x), r(x) with integer coefficients such that

(1 + x+ x2 + · · ·+ xℓ−1)p(x) = q(x) + xℓr(x).

Solution 1

Let d be the degree of p and let k be any non-negative integer. We will choose

q(x) =
xd+k+ℓp

(
1
x

)
− p(x)

x− 1
,

r(x) =
p(x)− xd+kp

(
1
x

)
x− 1

.

First, we must show that both q and r are integer polynomials. Consider the
numerator in q’s definition, xd+k+ℓp

(
1
x

)
− p(x). This is clearly an integer polynomial.

As it is equal to 0 when evaluated at x− 1, x− 1 divides it. Furthermore, as x− 1 is
monic, the quotient has integer coefficients. The argument for r is similar.

Next, we will show that this choice of q and r satisfies the desired equation. Plugging
them into the RHS of the equation gives

q(x) + xℓr(x) =
xd+k+ℓp

(
1
x

)
− p(x)

x− 1
+ xℓ

(
p(x)− xd+kp

(
1
x

)
x− 1

)

=
xd+k+ℓp

(
1
x

)
− p(x) + xℓp(x)− xd+k+ℓp

(
1
x

)
x− 1

=

(
xℓ − 1

x− 1

)
p(x)

= (1 + x+ · · ·+ xℓ−1)p(x)

as desired.

Finally, we will show that q and r are indeed reflexive. We can re-interpret the reflexive
condition as such:

Polynomial a(x) is reflexive iff there is an integer n ≥ deg(a) for which

a(x) = xna

(
1

x

)
.
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We have

q(x) =
xd+k+ℓp

(
1
x

)
− p(x)

x− 1

= xd+k+ℓ−1 ·
p
(
1
x

)
− x−(d+k+ℓ)p(x)

x−1
x

= xd+k+ℓ−1 ·
x−(d+k+ℓ)p(x)− p

(
1
x

)
1
x
− 1

= xd+k+ℓ−1q

(
1

x

)
as desired. Similarly,

r(x) =
p(x)− xd+kp

(
1
x

)
x− 1

= xd+k−1 ·
x−(d+k)p(x)− p

(
1
x

)
x−1
x

= xd+k−1 ·
p
(
1
x

)
− x−(d+k)p(x)

1
x
− 1

= xd+k−1r

(
1

x

)
.

Solution 2

We write degree n polynomial p as

p(x) :=
n∑

i=0

pix
i.

Define vector P ∈ Zn+1 as
P :=

(
p0 p1 · · · pn

)T
.

We also denote X ∈ Z[x]N for N some sufficiently high degree (e.g. N > 2n+ ℓ) as the
vector of powers of x, i.e.

X :=
(
1 x x2 · · · xN−1

)T
.

For a matrix M ∈ Z(n+1)×N , P TMX is an integer polynomial of degree < N . Note that
if the non-zero entries of matrix M are horizontally symmetric, then the resulting
polynomial must be reflexive.
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Let A be the matrix corresponding to (1 + x+ · · ·+ xℓ−1)p(x). The non-zero entries of
the matrix form a parallelogram. In particular, A is a sparse matrix with 1s across the
upper ℓ diagonals. For example, for ℓ = 3, n = 4,

A =


1 1 1 · · ·

1 1 1 · · ·
1 1 1 · · ·

1 1 1 · · ·
1 1 1 · · ·

 .

We will now construct matrices Q,R ∈ Z(n+1)×N such that Q and R will correspond to
q(x) and xℓr(x), respectively. Thus, we require

(1 + x+ x2 + · · ·+ xℓ−1)p(x) = q(x) + xℓr(x)

⇐⇒ P TAX = P TQX + P TRX

⇐⇒ P T (A−Q−R)X = 0.

So it suffices to find Q and R horizontally symmetric and such that Q+R = A. Note
that the first ℓ columns of R must also be zero.

As it turns out, many constructions exist. For example, consider Q with 1 entries
forming a isosceles triangle with base from 0 to 2n:

Q =


1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 · · ·
1 1 1 1 1 · · ·

1 1 1 · · ·
1 · · ·

 .

Then the difference, R = A−Q is

R =


−1 −1 −1 −1 −1 −1 · · ·

−1 −1 −1 −1 · · ·
−1 −1 · · ·

· · ·
1 1 · · ·

 .

Extending this triangle structure to an isosceles trapezoid (even a self-intersecting one)
works as well. More rigorously, define Q to be the matrix whose entries are 1 at the
isosceles trapezoid from (zero-indexed) entries at

(0, 0), (0, n+ k), (n, k), (n, n)

in that order, for any non-negative integer k with k ≥ ℓ. (If we choose k < n, the
entries may be −1 to account for the self-intersection.) Define R to be the matrix
whose entries are −1 at the isosceles trapezoid from entries at

(0, ℓ), (0, n+ k), (n, k), (n, n+ ℓ).
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Then their total is the matrix whose entries are 1 at the parallelogram formed by

(0, 0), (0, ℓ− 1), (n, n+ ℓ− 1), (n, n),

which is precisely A.
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